login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that 5^A000010(n) == 1 (mod n^2).
11

%I #34 Jun 02 2020 16:02:09

%S 2,20771,40487,41542,80974,83084,161948,643901,1255097,1287802,

%T 1391657,1931703,2510194,2575604,2783314,3765291,3863406,4174971,

%U 5020388,5151208,5566628,7530582,7726812,8349942,10040776,11133256,15061164,15308227,15453624,16699884

%N Numbers n such that 5^A000010(n) == 1 (mod n^2).

%H Giovanni Resta, <a href="/A242959/b242959.txt">Table of n, a(n) for n = 1..479</a> (terms < 10^15, first 75 terms from Felix Fröhlich)

%t Select[Range[167*10^5],PowerMod[5,EulerPhi[#],#^2]==1&] (* _Harvey P. Dale_, Jun 02 2020 *)

%o (PARI) for(n=2, 10^9, if(Mod(5, n^2)^(eulerphi(n))==1, print1(n, ", ")))

%Y Cf. A077816, A242958, A242960.

%Y If a(n) is prime, then a(n) is in A123692.

%K nonn

%O 1,1

%A _Felix Fröhlich_, May 27 2014