login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = A060828(n)/(A060828(k) * A060828(n-k)).
4

%I #22 Mar 04 2023 04:27:26

%S 1,1,1,1,1,1,1,3,3,1,1,1,3,1,1,1,1,1,1,1,1,1,3,3,1,3,3,1,1,1,3,1,1,3,

%T 1,1,1,1,1,1,1,1,1,1,1,1,9,9,3,9,9,3,9,9,1,1,1,9,3,3,9,3,3,9,1,1,1,1,

%U 1,3,3,3,3,3,3,1,1,1,1,3,3,1,9,9,3,9,9,1

%N Triangle read by rows: T(n,k) = A060828(n)/(A060828(k) * A060828(n-k)).

%C This triangle can be obtained by replacing each entry of Pascal's Triangle by the largest power of 3 dividing that entry.

%C The exponent of T(n,k) is the number of 'carries' that occur when adding k and n-k in base 3 using the traditional addition algorithm.

%C If T(n,k) != 0 mod 3, then n dominates k in base 3.

%H Tyler Ball, Tom Edgar, and Daniel Juda, <a href="http://dx.doi.org/10.4169/math.mag.87.2.135">Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem</a>, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.

%H Tyler Ball and Daniel Juda, <a href="https://scholar.rose-hulman.edu/rhumj/vol14/iss2/2">Dominance over N</a>, Rose-Hulman Undergraduate Mathematics Journal, Vol. 13, No. 2, Fall 2013.

%H E. Burlachenko, <a href="https://arxiv.org/abs/1612.00970">Fractal generalized Pascal matrices</a>, arXiv:1612.00970 [math.NT], 2016. See p. 7.

%H Tom Edgar and Michael Z. Spivey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Edgar/edgar3.html">Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.

%F T(n,k) = A060828(n)/(A060828(k) * A060828(n-k)).

%F T(n,k) = Product_{i=1..n} A038500(i)/(Product_{i=1..k} A038500(i)*Product_{i=1..n-k} A038500(i)).

%F T(n,k) = A038500(n)/n*(k/A038500(k)*T(n-1,k-1)+(n-k)/A038500(n-k)*T(n-1,k)).

%e The triangle begins

%e 1

%e 1 1

%e 1 1 1

%e 1 3 3 1

%e 1 1 3 1 1

%e 1 1 1 1 1 1

%e 1 3 3 1 3 3 1.

%t s3[n_] := 3^IntegerExponent[n!, 3];

%t T[n_, k_] := s3[n]/(s3[k] s3[n-k]);

%t Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 06 2018 *)

%o (Sage)

%o m=50

%o T=[0]+[3^valuation(i,3) for i in [1..m]]

%o Table=[[prod(T[1:i+1])/(prod(T[1:j+1])*prod(T[1:i-j+1])) for j in [0..i]] for i in [0..m-1]]

%o [x for sublist in Table for x in sublist]

%Y Cf. A007318, A038500, A060828, A082907.

%K nonn,tabl

%O 0,8

%A _Tom Edgar_, May 23 2014