login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = [x^n] ( 1 + x*A(x)^n )^(n+1) / (n+1) for n>=0, with a(0)=1.
1

%I #6 May 22 2014 22:32:42

%S 1,1,3,22,257,3986,75304,1653086,40979297,1126004203,33856704386,

%T 1103686134563,38734891315775,1455569736467094,58304721086789654,

%U 2480233978808257526,111686585878084164913,5308774844414927594856,265682854185812938555354,13966882165871163036529423

%N a(n) = [x^n] ( 1 + x*A(x)^n )^(n+1) / (n+1) for n>=0, with a(0)=1.

%C Compare to the g.f. G(x) = x + x*G(G(x)) of A030266 that satisfies:

%C A030266(n+1) = [x^n] ( 1 + G(x) )^(n+1) / (n+1) for n>=0.

%e G.f.: A(x) = 1 + x + 3*x^2 + 22*x^3 + 257*x^4 + 3986*x^5 + 75304*x^6 +...

%e Form a table of coefficients of x^k in (1 + x*A(x)^n)^(n+1) like so:

%e n=0: [1, 1, 0, 0, 0, 0, 0, 0, ...];

%e n=1: [1, 2, 3, 8, 51, 564, 8539, 159226, ...];

%e n=2: [1, 3, 9, 34, 210, 2118, 30245, 544962, ...];

%e n=3: [1, 4, 18, 88, 575, 5472, 73242, 1263604, ...];

%e n=4: [1, 5, 30, 180, 1285, 12016, 151820, 2490390, ...];

%e n=5: [1, 6, 45, 320, 2520, 23916, 290162, 4518600, ...];

%e n=6: [1, 7, 63, 518, 4501, 44310, 527128, 7834548, ...];

%e n=7: [1, 8, 84, 784, 7490, 77504, 922096, 13224688, ...];

%e n=8: [1, 9, 108, 1128, 11790, 129168, 1561860, 21921156, ...]; ...

%e then this sequence is formed from the main diagonal:

%e [1/1, 2/2, 9/3, 88/4, 1285/5, 23916/6, 527128/7, 13224688/8, ...].

%o (PARI) {a(n)=local(A=[1,1]);for(m=1,n,A=concat(A,0);A[m+1]=Vec((1+x*Ser(A)^m)^(m+1))[m+1]/(m+1));A[n+1]}

%o for(n=0,25,print1(a(n),", "))

%Y Cf. A242795.

%K nonn

%O 0,3

%A _Paul D. Hanna_, May 22 2014