

A242750


Positive integers n with property that n is a primitive root modulo prime(n).


7



1, 2, 3, 6, 7, 10, 11, 13, 15, 18, 24, 26, 28, 33, 39, 41, 44, 45, 48, 50, 54, 55, 56, 58, 62, 65, 68, 69, 71, 75, 79, 83, 85, 93, 95, 107, 108, 109, 110, 117, 118, 119, 120, 123, 126, 129, 130, 131, 133, 139, 142, 143, 145, 148, 157, 158, 160, 163, 164, 166, 170, 172, 173, 174, 179, 182, 186, 190, 191, 195
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

According to the conjecture in A242748, this sequence should have infinitely many terms.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000


EXAMPLE

6 is a member since 6 is a primitive root modulo prime(6) = 13, but 4 and 5 are not since 4 is not a primitive root modulo prime(4) = 7 and 5 is not a primitive root modulo prime(5) = 11.


MATHEMATICA

dv[n_]:=Divisors[n]
n=0; Do[Do[If[Mod[k^(Part[dv[Prime[k]1], j]), Prime[k]]==1, Goto[aa]], {j, 1, Length[dv[Prime[k]1]]1}]; n=n+1; Print[n, " ", k]; Label[aa]; Continue, {k, 1, 195}]


CROSSREFS

Cf. A000040, A000720, A242748, A242752.
Sequence in context: A307414 A073439 A188084 * A299239 A107998 A276884
Adjacent sequences: A242747 A242748 A242749 * A242751 A242752 A242753


KEYWORD

nonn


AUTHOR

ZhiWei Sun, May 21 2014


STATUS

approved



