login
n!-2n.
1

%I #8 Oct 22 2024 16:04:10

%S -1,-2,0,16,110,708,5026,40304,362862,3628780,39916778,479001576,

%T 6227020774,87178291172,1307674367970,20922789887968,355687428095966,

%U 6402373705727964,121645100408831962,2432902008176639960,51090942171709439958,1124000727777607679956,25852016738884976639954,620448401733239439359952

%N n!-2n.

%C For n > 2, a(n) is the largest value of k such that (n!+k)/(n+k) is an integer.

%C For n > 2, a(n) is the largest value of k such that (n!+k)/(n+k) is prime.

%C For n > 1, a(n) is even.

%F a(n) = n!-2n.

%e 3!-2*3 = 0 so a(3) = 0.

%e 4!-2*4 = 16 so a(4) = 16.

%e 5!-2*5 = 110 so a(5) = 110.

%t Table[n!-2n,{n,30}] (* _Harvey P. Dale_, Oct 22 2024 *)

%o (Python)

%o import math

%o {print(math.factorial(n)-2*n) for n in range(1,25)}

%o (PARI) for(n=1,25,print(n!-2*n))

%Y Cf. A000142, A242567, A242568.

%K sign

%O 1,2

%A _Derek Orr_, May 17 2014