Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jun 18 2020 09:17:14
%S 1,113,106,259,304,85,212,135,158,47,62,985,84,47,518,485,178,169,106,
%T 27,88,139,632,47,44,643,20,209,606,1529,32,31,1094,139,754,647,38,37,
%U 262,69,94,631,90,25,38,195,10,277,232,187,554,189,10,47,216,131,1132,173,390
%N Least number k such that n^128+k^128 is prime.
%C If a(n) = 1, then n is in A056994.
%t lnk[n_]:=Module[{c=n^128,k},k=If[EvenQ[c],1,2];While[!PrimeQ[c+ k^128],k = k+2];k]; Join[{1},Array[lnk,60,2]] (* _Harvey P. Dale_, Mar 17 2015 *)
%o (Python)
%o import sympy
%o from sympy import isprime
%o def a(n):
%o for k in range(10**4):
%o if isprime(n**128+k**128):
%o return k
%o n = 1
%o while n < 100:
%o print(a(n))
%o n += 1
%o (PARI) a(n)=for(k=1,10^4,if(ispseudoprime(n^128+k^128),return(k)));
%o n=1;while(n<100,print(a(n));n+=1)
%Y Cf. A069003, A056994.
%K nonn
%O 1,2
%A _Derek Orr_, May 17 2014