Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 24 2018 22:28:03
%S 0,0,0,0,0,0,1,11,125,1351,15330,184846,2382084,32795170,481379278,
%T 7513591430,124363961357,2176990766569,40199252548280,781143277669538,
%U 15937382209774353,340696424417421213,7616192835573406931,177723017354688250713,4321711817908214684734
%N Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at least 3.
%C a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S of n elements and a specific pair-property P. For more details, see the link and A242519.
%H Hiroaki Yamanouchi, <a href="/A242523/b242523.txt">Table of n, a(n) for n = 1..27</a> (terms a(1)-a(15) from _Stanislav Sykora_)
%H S. Sykora, <a href="http://dx.doi.org/10.3247/SL5Math14.002">On Neighbor-Property Cycles</a>, <a href="http://ebyte.it/library/Library.html#math">Stan's Library</a>, Volume V, 2014.
%e The shortest cycle with this property has length n=7: {1,4,7,3,6,2,5}.
%t A242523[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2;
%t j1f[x_] := Join[{1}, x, {1}];
%t lpf[x_] := Length[Select[Abs[Differences[x]], # < 3 &]];
%t Table[A242523[n], {n, 1, 10}]
%t (* OR, a less simple, but more efficient implementation. *)
%t A242523[n_, perm_, remain_] := Module[{opt, lr, i, new},
%t If[remain == {},
%t If[Abs[First[perm] - Last[perm]] >= 3, ct++];
%t Return[ct],
%t opt = remain; lr = Length[remain];
%t For[i = 1, i <= lr, i++,
%t new = First[opt]; opt = Rest[opt];
%t If[Abs[Last[perm] - new] < 3, Continue[]];
%t A242523[n, Join[perm, {new}],
%t Complement[Range[2, n], perm, {new}]];
%t ];
%t Return[ct];
%t ];
%t ];
%t Table[ct = 0; A242523[n, {1}, Range[2, n]]/2, {n, 1, 11}] (* _Robert Price_, Oct 24 2018 *)
%o (C++) See the link.
%Y Cf. A242519, A242520, A242521, A242522, A242524, A242525, A242526, A242527, A242528, A242529, A242530, A242531, A242532, A242533, A242534.
%K nonn,hard
%O 1,8
%A _Stanislav Sykora_, May 27 2014
%E a(16)-a(25) from _Hiroaki Yamanouchi_, Aug 28 2014