login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at least 2.
19

%I #72 Jan 22 2021 14:22:36

%S 0,0,0,0,1,5,33,245,2053,19137,196705,2212037,27029085,356723177,

%T 5058388153,76712450925,1239124984693,21241164552785,385159565775633,

%U 7365975246680597,148182892455224845,3128251523599365177,69149857480654157545,1597343462243140957757

%N Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at least 2.

%C a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S of n elements and a specific pair-property P. For more details, see the link and A242519.

%C Number of Hamiltonian cycles in the complement of P_n, where P_n is the n-path graph. - _Andrew Howroyd_, Mar 15 2016

%C a(n) also agrees with the number of optimal fundamentally distinct radio labelings of the wheel graph on (n+1) nodes for n = 5 up to at least n = 10 (and likely all larger n). - _Eric W. Weisstein_, Jan 12 2021

%C a(n) also agrees with the number of optimal fundamentally distinct radio labelings of the n-dipyramidal graph for n = 5 up to at least n = 9 (and likely all larger n). - _Eric W. Weisstein_, Jan 14 2021

%H Andrew Woods, <a href="/A242522/b242522.txt">Table of n, a(n) for n = 1..100</a> (terms up to a(24) from _Hiroaki Yamanouchi_, Aug 28 2014)

%H F. C. Holroyd and W. J. G. Wingate, <a href="http://dx.doi.org/10.1016/S0012-365X(85)80003-0">Cycles in the complement of a tree or other graph</a>, Discrete Math., 55 (1985), 267-282.

%H S. Sykora, <a href="http://dx.doi.org/10.3247/SL5Math14.002">On Neighbor-Property Cycles</a>, <a href="http://ebyte.it/library/Library.html#math">Stan's Library</a>, Volume V, 2014.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DipyramidalGraph.html">Dipyramidal Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianCycle.html">Hamiltonian Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PathComplementGraph.html">Path Complement Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RadioLabeling.html">Radio Labeling</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WheelGraph.html">Wheel Graph</a>

%F a(n) = A002493(n)/(2*n), n>1. - _Andrew Woods_, Dec 08 2014

%F a(n) = Sum_{k=1..n} (-1)^(n-k)*k!*A102413(n,k) / (2*n), n>2. - _Andrew Woods_ after _Vladeta Jovovic_, Dec 08 2014

%F a(n) = (n-1)!/2 + sum_{i=1..n-1} ((-1)^i * (n-i-1)! * sum_{j=0..i-1} (2^j * C(i-1,j) * C(n-i,j+1))), for n>=5. - _Andrew Woods_, Jan 08 2015

%F a(n) = n a(n-1) - (n-5) a(n-2) - (n-4) a(n-3) + (n-4) a(n-4), for n>6. - _Jean-François Alcover_, Oct 07 2017

%e The 5 cycles of length n=6 having this property are {1,3,5,2,4,6}, {1,3,5,2,6,4}, {1,3,6,4,2,5}, {1,4,2,5,3,6}, {1,4,2,6,3,5}.

%t a[n_ /; n < 5] = 0; a[5] = 1; a[6] = 5; a[n_] := a[n] = n a[n - 1] - (n - 5) a[n - 2] - (n - 4) a[n - 3] + (n - 4) a[n - 4]; Array[a, 24] (* _Jean-François Alcover_, Oct 07 2017 *)

%t Join[{0, 0}, RecurrenceTable[{a[n] == n a[n - 1] - (n - 5) a[n - 2] - (n - 4) a[n - 3] + (n - 4) a[n - 4], a[3] == a[4] == 0, a[5] == 1, a[6] == 5}, a, {n, 20}]] (* _Eric W. Weisstein_, Apr 12 2018 *)

%o (C++) See the link.

%Y Cf. A242519, A242520, A242521, A242523, A242524, A242525, A242526, A242527, A242528, A242529, A242530, A242531, A242532, A242533, A242534.

%Y Cf. A006184.

%K nonn

%O 1,6

%A _Stanislav Sykora_, May 27 2014