OFFSET
0,4
EXAMPLE
For n=8 the four plane partitions which are counted are: ((8)),((3,2,1),(2)), ((3,2),(2,1)), ((3,2),(2),(1)).
MATHEMATICA
<<Combinatorica`
gf=1;
For[n=1, n<=25, n++,
unre=Partitions[n];
For[m=1, m<=Length[unre], m++,
For[i=1, i<=n, i++,
For[j=1, j<=n, j++, box[i, j]=0]];
For[i=1, i<=Length[unre[[m]]], i++,
For[j=1, j<=unre[[m]][[i]], j++, box[i, j]=i+j-1]];
max=Max[Table[box[i, j], {i, 1, n}, {j, 1, n}]];
For[i=1, i<=Length[unre[[m]]], i++,
For[j=1, j<=unre[[m]][[i]], j++, box[i, j]=max+1-box[i, j]]];
sum=0;
For[i=1, i<=Length[unre[[m]]], i++,
For[j=1, j<=unre[[m]][[i]], j++, sum=sum+box[i, j]]];
function=x^sum/(1-x^n);
gf=gf+function]];
CoefficientList[Series[gf, {x, 0, 80}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
David S. Newman, May 13 2014
STATUS
approved