login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Write n and 3n in ternary representation and add all trits modulo 3.
8

%I #12 Jan 19 2022 11:16:52

%S 0,4,8,12,16,11,24,19,23,36,40,44,48,52,47,33,28,32,72,76,80,57,61,56,

%T 69,64,68,108,112,116,120,124,119,132,127,131,144,148,152,156,160,155,

%U 141,136,140,99,103,107,84,88,83,96,91,95,216,220,224,228,232

%N Write n and 3n in ternary representation and add all trits modulo 3.

%H Reinhard Zumkeller, <a href="/A242399/b242399.txt">Table of n, a(n) for n = 0..10000</a>

%H P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, <a href="https://arxiv.org/abs/2201.06636">On digital sequences associated with Pascal's triangle</a>, arXiv:2201.06636 [math.NT], 2022.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Ternary.html">Ternary.</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Ternary_numeral_system">Ternary numeral system</a>

%H <a href="/index/Ca#CARRYLESS">Index entries for sequences related to carryless arithmetic</a>

%F a(n) <= 4*n; a(m) = 4*m iff m is a term of A242407.

%F a(n) = A008586(n) - A242400(n).

%e n = 25, 3*n = 75:

%e . A007089(25) = 221

%e . A007089(75) = 2210

%e . add trits ----

%e . modulo 3 2101 = A007089(64), hence a(25) = 64.

%o (Haskell)

%o a242399 n = foldr (\t v -> 3 * v + t) 0 $

%o map (flip mod 3) $ zipWith (+) ([0] ++ ts) (ts ++ [0])

%o where ts = a030341_row n

%Y Cf. A004488, A007089, A008586, A030341, A048724, A242400, A242407.

%Y Row / column 4 of A325820.

%K nonn,base

%O 0,2

%A _Reinhard Zumkeller_, May 13 2014