Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 31 2014 14:49:39
%S 4,6,8,10,12,14,18,20,22,24,26,28,32,34,36,38,40,42,44,48,50,52,54,56,
%T 58,62,64,66,68,70,72,74,78,80,82,84,86,88,92,94,96,98,100,102,104,
%U 108,110,112,114,116,118,122,124,126,128,130,132,134,138,140,142
%N Number of rows of equilateral triangles (sides length = 1) that intersect the circumference of a circle of radius n centered at (0,0) or (1/2,0).
%C See crossreferenced sequences for illustrations.
%F G.f., conjectured: (-2*x^14 + 4*x^13 + 2*x^12 + 2*x^11 + 2*x^10 + 2*x^9 + 2*x^8 + 4*x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 4*x)/(x^14 - x^13 - x + 1). - _Ralf Stephan_, May 18 2014
%F Asymptotics from g.f.: a(n) ~ 30/13 * n. - _Ralf Stephan_, May 18 2014
%o (Small Basic)
%o For n =1 To 100
%o r6=n*math.Sin(30*Math.Pi/180)/(Math.Power(3,0.5)/2)
%o r6a=math.Round(r6)
%o If r6-math.Floor(r6) > 0.5 Then
%o a=r6a*4
%o Else
%o a=2*(r6a*2+1)
%o EndIf
%o TextWindow.Write(a+", ")
%o EndFor
%Y Cf. A242394, A242395.
%K nonn
%O 1,1
%A _Kival Ngaokrajang_, May 13 2014