login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangular array of the positive integers ordered as in Comments.
6

%I #8 Jun 13 2014 05:04:43

%S 1,2,4,8,3,16,6,5,32,12,10,9,7,64,24,20,18,17,15,14,13,128,48,40,36,

%T 34,33,31,30,29,28,26,25,11,256,96,80,72,68,66,65,63,62,61,60,58,57,

%U 56,52,50,49,23,22,21,19,512,192,160,144,136,132,130,129,127

%N Irregular triangular array of the positive integers ordered as in Comments.

%C As in A242364, let f1(x) = 2x, f2(x) = 1-x, f3(x) = 2-x, g(1) = (1), and g(n) = union(f1(g(n-1)), f2(g(n-1)),f3(g(n-1))) for n >1. Let T be the array whose n-th row consists of the positive numbers in g(n) arranged in increasing order. It is easy to prove that every positive integer occurs exactly once in T.

%C Conjectures: (1) |g(n)| = F(n-1) for n >=2, where F = A000045 (the Fibonacci numbers); (2) the number of even numbers in g(n) is F(n-2) and the number of odd numbers is F(n-3).

%H Clark Kimberling, <a href="/A242365/b242365.txt">Table of n, a(n) for n = 1..1500</a>

%e First 7 rows of the array:

%e 1

%e 2

%e 4

%e 8 ... 3

%e 16 .. 6 ... 5

%e 32 .. 12 .. 10 .. 9 ... 7

%e 64 .. 24 .. 20 .. 18 .. 17 .. 15 .. 14 .. 13

%t z = 12; g[1] = {1}; f1[x_] := 2 x; f2[x_] := 1 - x; f3[x_] := 2 - x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]], f3[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]; u = Table[g[n], {n, 1, 9}]

%t u1 = Flatten[u] (* A242364 *)

%t v = Table[Reverse[Drop[g[n], Fibonacci[n - 1]]], {n, 1, z}]

%t v1 = Flatten[v] (* A242365 *)

%t w1 = Table[Apply[Plus, g[n]], {n, 1, 20}] (* A243735 *)

%t w2 = Table[Apply[Plus, v[[n]]], {n, 1, 10}] (* A243736 *)

%Y Cf. A242364, A243735, A243736, A242448, A000045.

%K nonn,easy,tabf

%O 1,2

%A _Clark Kimberling_, Jun 11 2014