login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Plane partitions into odd parts.
0

%I #24 May 06 2018 03:12:39

%S 1,1,2,4,7,11,20,30,50,75,121,176,276,398,604,864,1285,1814,2652,3713,

%T 5339,7417,10526,14500,20349,27836,38653,52528,72291,97612,133249,

%U 178889,242379,323634,435557,578579,773877,1023074,1360565

%N Plane partitions into odd parts.

%e Example for n=4:

%e ((3,1)), ((3)(1)), ((1,1,1,1)), ((1,1,1),(1)),

%e ((1,1),(1,1)), ((1,1),(1),(1)), ((1),(1),(1),(1)).

%t << Combinatorica`

%t pilings[par_List]:=Module[{tel,alles},tel=Length[par];alles=List/@Partitions[par[[1]]];

%t Do[alles=Flatten[Function[argu,(Flatten[{argu,{#1}},1]&)/@Select[Partitions[par[[i]]],Length[#1]<=Length[Last[argu]]&&And@@Thread[#1<=Take[Last[argu],Length[#1]]]&]]/@alles,1],{i,2,tel}];alles];

%t Table[Tr[Count[pilings[#],q_/;FreeQ[q,_?EvenQ]]&/@Partitions[w]],{w,24}]

%Y Cf. A000219.

%K nonn

%O 0,3

%A _David S. Newman_, May 11 2014

%E a(8)-a(24) from _Wouter Meeussen_

%E a(25)-a(38) from _Vaclav Kotesovec_, May 05 2018