login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242322
T(n,k)=Number of length n+k+2 0..k arrays with every value 0..k appearing at least once in every consecutive k+3 elements, and new values 0..k introduced in order
6
7, 25, 13, 65, 61, 24, 140, 185, 145, 44, 266, 440, 503, 337, 81, 462, 896, 1300, 1316, 781, 149, 750, 1638, 2801, 3648, 3398, 1829, 274, 1155, 2766, 5334, 8231, 10012, 8801, 4269, 504, 1705, 4395, 9290, 16194, 23486, 27368, 23069, 9957, 927, 2431, 6655
OFFSET
1,1
COMMENTS
Table starts
....7....25.....65.....140.....266.....462......750.....1155.....1705.....2431
...13....61....185.....440.....896....1638.....2766.....4395.....6655.....9691
...24...145....503....1300....2801....5334.....9290....15123....23350....34551
...44...337...1316....3648....8231...16194....28897....47931....75118...112511
...81...781...3398...10012...23486...47466....86381...145443...230647...348771
..149..1829...8801...27368...66366..137166...253674...432331...692113..1054531
..274..4269..23069...75236..187671..395166...740496..1274419..2055676..3150991
..504..9957..60197..208976..533801.1141290..2161503..3749211..6083896..9369751
..927.23233.156887..577964.1530356.3312546..6326951.11042115.18002245.27827211
.1705.54225.408962.1596216.4371836.9669270.18590776.32600811.53341987.82686971
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3)
k=2: a(n) = a(n-1) +2*a(n-2) +2*a(n-3) +2*a(n-4) -a(n-5) -a(n-6)
k=3: [order 10]
k=4: [order 15]
k=5: [order 21]
k=6: [order 28]
Empirical for row n:
n=1: a(n) = (1/8)*n^4 + (11/12)*n^3 + (19/8)*n^2 + (31/12)*n + 1
n=2: a(n) = (5/8)*n^4 + (35/12)*n^3 + (39/8)*n^2 + (43/12)*n + 1
n=3: a(n) = (21/8)*n^4 + (89/12)*n^3 + (67/8)*n^2 + (55/12)*n + 1
n=4: a(n) = (77/8)*n^4 + (179/12)*n^3 + (103/8)*n^2 + (67/12)*n + 1
n=5: a(n) = (261/8)*n^4 + (245/12)*n^3 + (163/8)*n^2 + (79/12)*n + 1
n=6: a(n) = (845/8)*n^4 - (73/12)*n^3 + (343/8)*n^2 + (91/12)*n + 1 for n>1
n=7: a(n) = (2661/8)*n^4 - (2263/12)*n^3 + (1059/8)*n^2 + (103/12)*n + 1 for n>2
n=8: a(n) = (8237/8)*n^4 - (11701/12)*n^3 + (3879/8)*n^2 + (115/12)*n + 1 for n>3
n=9: a(n) = (25221/8)*n^4 - (46531/12)*n^3 + (14275/8)*n^2 + (127/12)*n + 1 for n>4
n=10: a(n) = (76685/8)*n^4 - (165601/12)*n^3 + (50455/8)*n^2 + (139/12)*n + 1 for n>5
n=11: a(n) = (232101/8)*n^4 - (555055/12)*n^3 + (171139/8)*n^2 + (151/12)*n + 1 for n>6
n=12: a(n) = (700397/8)*n^4 - (1794061/12)*n^3 + (561703/8)*n^2 + (163/12)*n + 1 for n>7
n=13: a(n) = (2109381/8)*n^4 - (5664667/12)*n^3 + (1798755/8)*n^2 + (175/12)*n + 1 for n>8
n=14: a(n) = (6344525/8)*n^4 - (17608249/12)*n^3 + (5657175/8)*n^2 + (187/12)*n + 1 for n>9
n=15: a(n) = (19066341/8)*n^4 - (54151687/12)*n^3 + (17559907/8)*n^2 + (199/12)*n + 1 for n>10
EXAMPLE
Some solutions for n=5 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....0....1....1....1....1....1....1....1....1....0....1....0....1....1
..0....2....1....1....2....2....1....2....2....2....1....0....2....1....0....1
..2....1....2....2....3....2....0....1....3....3....2....1....3....2....2....2
..3....3....3....3....0....3....2....3....1....4....3....2....4....0....0....0
..4....0....0....0....2....2....3....4....0....2....2....3....3....3....3....3
..1....4....4....4....4....4....4....0....4....0....4....4....2....4....4....4
..2....1....2....4....1....0....1....2....3....3....0....1....0....1....4....4
..0....1....0....1....1....1....1....3....3....1....1....2....1....1....1....1
..3....2....1....2....3....4....0....1....2....1....4....0....3....3....2....2
..1....0....4....0....2....4....0....1....2....2....4....4....2....2....0....4
CROSSREFS
Column 1 is A000073(n+5)
Row 1 is A001296(n+1)
Sequence in context: A286742 A322563 A065658 * A249437 A246792 A178370
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 10 2014
STATUS
approved