This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242295 Positive integers k for which k^3 is greedy-summable. 4

%I

%S 6,9,13,14,18,19,25,27,28,39,40,41,44,46,49,57,67,78,82,87,90,92,93,

%T 99,100,103,109,114,115,123,125,130,132,133,135,140,150,151,160,165,

%U 169,173,182,188,193,204,208,209,211,214,217,224,230,237,238,240,244

%N Positive integers k for which k^3 is greedy-summable.

%C Greedy summability is defined at A242293.

%H Clark Kimberling, <a href="/A242295/b242295.txt">Table of n, a(n) for n = 1..400</a>

%e Let s(n) = n^3 = A000578(n). Then

%e a(1) = 6; s(6) = 216 = 125 + 64 + 27;

%e a(2) = 9; s(9) = 729 = 512 + 216 + 1;

%e a(3) = 13; s(13) = 2197 = 1728 + 343 + 125 + 1;

%e a(4) = 14; s(14) = 2744 = 2197 + 512 + 27 + 8.

%t z = 200; s = Table[n^3, {n, 1, z}]; t = Table[{s[[n]], #, Total[#] == s[[n]]} &[DeleteCases[-Differences[FoldList[If[#1 - #2 >= 0, #1 - #2, #1] &, s[[n]], Reverse[Select[s, # < s[[n]] &]]]], 0]], {n, z}]

%t r[n_] := s[[n]] - Total[t[[n]][[2]]];

%t tr = Table[r[n], {n, 2, z}] (* A242293 *)

%t c = Table[Length[t[[n]][[2]]], {n, 2, z}] (* A242294 *)

%t f = 1 + Flatten[Position[tr, 0]] (* A242295 *)

%t f^3 (* A242296 *) (* _Peter J. C. Moses_, May 06 2014 *)

%Y Cf. A242293, A242294, A242296, A241833, A242284, A000578.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, May 10 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 10:00 EDT 2019. Contains 328257 sequences. (Running on oeis4.)