login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242268
Squares not ending in 00 that remain squares if prefixed with the digit 1.
4
225, 5625, 5405625, 23765625, 2127515625, 58503515625, 51921031640625, 250727431640625, 20090404775390625, 608180644775390625, 498431438615478515625, 2642208974615478515625, 189450791534674072265625, 6319494849134674072265625, 9981411957966851806640625
OFFSET
1,1
COMMENTS
It can easily be shown that all squares that remain squares if prefixed with the digit 1 end in 00 or 25 and, moreover, that all squares ending in 00 are multiples of the squares ending in 5 (factor: 10^(2*n)).
Subsequence of A167035. - Michel Marcus, Sep 08 2014
LINKS
EXAMPLE
225 = 15*15 and 1225 = 35*35.
MAPLE
A:= {}:
for m from 3 to 100 do
cand1:= floor(log[5](1/2*(1+sqrt(2))*10^(m/2)));
cand2:= floor(log[5](2*(1+sqrt(2))*(5/2)^(m/2)));
s1:= 5^cand1 - 10^m/4/5^cand1;
s2:= 2^m/4*5^cand2 - 5^(m-cand2);
if s1^2 >= 10^(m-1) then A:= A union {s1^2} fi;
if s2^2 >= 10^(m-1) then A:= A union {s2^2} fi;
od:
A; # Robert Israel, Sep 08 2014
PROG
(Python)
import math
def power(a, n):
...pow = 1
...for i in range(0, n):
......pow = pow * a
...return pow
end = 50
for n in range(1, end):
...l1 = 1/math.log(5)*(math.log(math.sqrt(2)-1)+(n-2)/2*math.log(2))+ n/2
...u1 = 1/math.log(5)*(math.log(math.sqrt(11)-1)+(n-3)/2*math.log(2))+ (n-1)/2
...if math.ceil(l1) == math.floor(u1) and math.ceil(l1)>0:
......p = math.ceil(l1)
......x = power(5, p)*(-1)+power(2, n-2)*power(5, n-p)
......print(x*x)
...l2 = 1/math.log(5)*(math.log(math.sqrt(11)+1)+(n-3)/2*math.log(2))+ (n-1)/2
...u2 = 1/math.log(5)*(math.log(math.sqrt(2)+1)+(n-2)/2*math.log(2))+ n/2
...if math.ceil(l2) == math.floor(u2) and math.ceil(l2)>0:
......p = math.ceil(l2)
......x = power(5, p)-power(2, n-2)*power(5, n-p)
......print(x*x)
print('End.')
(PARI)
for(n=1, 10^20, p=n^2; if(p%100, s=concat("1", Str(p)); if(issquare(eval(s)), print1(p, ", ")))) \\ Derek Orr, Aug 23 2014
CROSSREFS
Cf. A167035.
Sequence in context: A297760 A167035 A167042 * A164763 A164752 A151651
KEYWORD
nonn,base
AUTHOR
Reiner Moewald, Aug 16 2014
STATUS
approved