login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least prime divisor of B(n) which does not divide any B(k) with k < n, or 1 if such a primitive prime divisor of B(n) does not exist, where B(n) is the n-th Bell number given by A000110.
11

%I #32 Jun 08 2024 15:44:37

%S 1,2,5,3,13,7,877,23,19,4639,22619,37,27644437,1800937,251,241,

%T 255755771,19463,271,61,24709,17,89,123419,367,101,157,67,75979,107,

%U 11,179167,5694673,111509,980424262253,193,44101,5399,6353,3221

%N Least prime divisor of B(n) which does not divide any B(k) with k < n, or 1 if such a primitive prime divisor of B(n) does not exist, where B(n) is the n-th Bell number given by A000110.

%C Conjecture: (i) a(n) > 1 for all n > 1.

%C Conjecture: (ii) For any integer n > 2, the derangement number D(n) given by A000166 has a prime divisor dividing none of those D(k) with 1 < k < n.

%H Amiram Eldar, <a href="/A242171/b242171.txt">Table of n, a(n) for n = 1..104</a> (terms 1..81 from Zhi-Wei Sun)

%p a(4) = 3 since B(4) = 3*5 with 3 dividing none of B(1) = 1, B(2) = 2 and B(3) = 5.

%t b[n_]:=BellB[n]

%t f[n_]:=FactorInteger[b[n]]

%t p[n_]:=Table[Part[Part[f[n],k],1],{k,1,Length[f[n]]}]

%t Do[If[b[n]<2,Goto[cc]];Do[Do[If[Mod[b[i],Part[p[n],k]]==0,Goto[aa]],{i,1,n-1}];Print[n," ",Part[p[n],k]];Goto[bb];Label[aa];Continue,{k,1,Length[p[n]]}];Label[cc];Print[n," ",1];Label[bb];Continue,{n,1,40}]

%o (Python)

%o # Python 3.2 or higher required.

%o from itertools import accumulate

%o from sympy import primefactors

%o A242171_list, bell, blist, b = [1], [1,1], [1], 1

%o for _ in range(20):

%o blist = list(accumulate([b]+blist))

%o b = blist[-1]

%o fs = primefactors(b)

%o for p in fs:

%o if all([n % p for n in bell]):

%o A242171_list.append(p)

%o break

%o else:

%o A242171_list.append(1)

%o bell.append(b) # Chai Wah Wu, Sep 19 2014

%Y Cf. A000040, A000110, A000166, A242169, A242170, A242173.

%K nonn

%O 1,2

%A _Zhi-Wei Sun_, May 06 2014