login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the integral of the q-Pochhammer symbol (reciprocal of the partition function) over the real interval -1 to 1.
5

%I #24 Jun 05 2015 04:15:33

%S 1,2,8,8,3,0,0,8,8,8,6,7,3,9,2,1,2,3,0,1,8,0,9,0,1,4,9,3,9,3,0,9,6,3,

%T 4,4,4,2,2,5,8,7,3,8,0,7,1,3,8,7,9,6,1,9,5,0,3,2,0,1,4,9,4,2,6,9,8,6,

%U 4,4,2,4,1,8,5,2,0,4,9,7,8,8,7,6,8,2,0,9,3,4,4,4,4,1,1,1,3,3,9,8,1,3,6,3,3

%N Decimal expansion of the integral of the q-Pochhammer symbol (reciprocal of the partition function) over the real interval -1 to 1.

%C As a function, the q-Pochhammer symbol is an irregularly left-skewed bell curve. It has limiting value 0 at -1 and 1, and its maximum is at -0.411248... (decimal value given by A143441).

%H Vaclav Kotesovec, <a href="http://oeis.org/A258232/a258232_2.pdf">The integration of q-series</a>

%H Vaclav Kotesovec, <a href="/A242168/a242168.jpg">Graph of the area below a curve</a>

%F Equals 4*sqrt(3/23)*Pi * (2*sinh(sqrt(23)*Pi/6) + sqrt(2)*sinh(sqrt(23)*Pi/4)) / (2*cosh(sqrt(23)*Pi/3)-1). - _Vaclav Kotesovec_, Jun 02 2015

%e 1.2883008886739212301809014939309634442258738...

%p evalf(4*sqrt(3/23)*Pi * (2*sinh(sqrt(23)*Pi/6) + sqrt(2)*sinh(sqrt(23)*Pi/4)) / (2*cosh(sqrt(23)*Pi/3)-1), 120); # _Vaclav Kotesovec_, Jun 02 2015

%t NIntegrate[QPochhammer[q, q], {q, -1, 1}, WorkingPrecision -> 45]

%t RealDigits[4*Sqrt[3/23]*Pi*(2*Sinh[Sqrt[23]*Pi/6] + Sqrt[2]*Sinh[Sqrt[23]*Pi/4]) / (2*Cosh[Sqrt[23]*Pi/3]-1), 10, 105][[1]] (* _Vaclav Kotesovec_, Jun 02 2015 *)

%o (PARI) eta2(q)=if(q==0,1,my(p=log(10^-38)/log(abs(q)),N=floor(sqrt(2*p/3)));sum(n=-N,N,(-1)^n*q^((3*n^2-n)/2),0.))

%o intnum(q=-.99999,.99999,eta2(q)) \\ Bill Allombert, May 06 2014

%Y Cf. A010815, A143441, A258232.

%K cons,nonn,nice

%O 1,2

%A _William J. Keith_, May 05 2014

%E More digits from _Vaclav Kotesovec_, Jun 02 2015