Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 May 09 2014 12:51:06
%S 2,2,2,2,3,2,3,2,5,2,2,9,3,9,2,4,2,33,9,17,2,2,28,2,129,27,33,2,5,2,
%T 244,5,513,81,65,2,2,33,2,1540,25,2049,243,129,2,6,9,257,7,4132,125,
%U 8193,729,257,2,2,51,81,2049,49,66340,625,32769,2187,513,2,17,2,376,729,16385,343,159652,3125,131073,6561,1025,2,2,161,2,4376,6561,131073,2401,1279396,15625
%N Table T(d,n) of smallest k>1 such that binomial(k*n-1,n-1) == 1 (mod n^d), read by antidiagonals.
%e T(3,6) = 244, since k=244 is the smallest solution greater than 1 to the congruence binomial(k*6-1,6-1) == 1 (mod 6^3).
%e Table starts with:
%e d=1: 2 2 2 3 2 4 2 5 2 ...
%e d=2: 2 3 2 9 2 28 2 33 9 ...
%e d=3: 2 5 3 33 2 244 2 257 81 ...
%e d=4: 2 9 9 129 5 1540 7 2049 729 ...
%e d=5: 2 17 27 513 25 4132 49 16385 6561 ...
%e d=6: 2 33 81 2049 125 66340 343 131073 59049 ...
%e d=7: 2 65 243 8193 625 159652 2401 ...
%e ...
%K hard,nonn,tabl
%O 1,1
%A _Felix Fröhlich_ and _Max Alekseyev_, May 05 2014