login
T(n,k)=Number of length n+5 0..k arrays with no consecutive six elements summing to more than 3*k
12

%I #4 May 05 2014 06:35:43

%S 42,435,74,2338,1113,132,8688,7862,2902,236,25494,36224,27024,7596,

%T 421,63490,126894,154647,93308,19834,747,140148,367358,647404,663395,

%U 321320,51440,1314,282051,924300,2180310,3319500,2837837,1098260,131950,2318

%N T(n,k)=Number of length n+5 0..k arrays with no consecutive six elements summing to more than 3*k

%C Table starts

%C ...42....435....2338.....8688.....25494......63490......140148......282051

%C ...74...1113....7862....36224....126894.....367358......924300.....2088459

%C ..132...2902...27024...154647....647404....2180310.....6256170....15876783

%C ..236...7596...93308...663395...3319500...13006484....42564898...121330981

%C ..421..19834..321320..2837837..16970962...77357343...288712815...924335053

%C ..747..51440.1098260.12043599..86052208..456215409..1941492045..6980495147

%C .1314.131950.3708268.50455611.430518585.2653766000.12874102578.51971761446

%H R. H. Hardin, <a href="/A242144/b242144.txt">Table of n, a(n) for n = 1..532</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 20]

%F Empirical for row n:

%F n=1: [polynomial of degree 6]

%F n=2: [polynomial of degree 7]

%F n=3: [polynomial of degree 8]

%F n=4: [polynomial of degree 9]

%F n=5: [polynomial of degree 10]

%F n=6: [polynomial of degree 11]

%F n=7: [polynomial of degree 12]

%e Some solutions for n=3 k=4

%e ..2....1....0....0....0....2....0....0....0....0....2....0....1....0....1....2

%e ..1....0....0....3....3....3....3....0....3....2....2....4....3....3....0....1

%e ..1....1....4....2....1....0....0....4....1....0....1....3....1....2....1....0

%e ..4....3....0....2....1....1....3....2....0....2....1....0....0....0....0....1

%e ..1....0....3....2....3....1....1....0....4....0....1....0....1....1....1....1

%e ..1....0....1....0....0....2....4....1....1....0....4....2....4....3....2....4

%e ..1....1....0....2....0....4....0....1....1....2....3....1....2....0....1....0

%e ..1....2....3....3....2....1....1....3....3....1....1....2....0....1....2....3

%Y Column 1 is A133551(n+5)

%Y Column 2 is A212227

%Y Column 3 is A212466

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, May 05 2014