%I #4 May 05 2014 06:35:43
%S 42,435,74,2338,1113,132,8688,7862,2902,236,25494,36224,27024,7596,
%T 421,63490,126894,154647,93308,19834,747,140148,367358,647404,663395,
%U 321320,51440,1314,282051,924300,2180310,3319500,2837837,1098260,131950,2318
%N T(n,k)=Number of length n+5 0..k arrays with no consecutive six elements summing to more than 3*k
%C Table starts
%C ...42....435....2338.....8688.....25494......63490......140148......282051
%C ...74...1113....7862....36224....126894.....367358......924300.....2088459
%C ..132...2902...27024...154647....647404....2180310.....6256170....15876783
%C ..236...7596...93308...663395...3319500...13006484....42564898...121330981
%C ..421..19834..321320..2837837..16970962...77357343...288712815...924335053
%C ..747..51440.1098260.12043599..86052208..456215409..1941492045..6980495147
%C .1314.131950.3708268.50455611.430518585.2653766000.12874102578.51971761446
%H R. H. Hardin, <a href="/A242144/b242144.txt">Table of n, a(n) for n = 1..532</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 20]
%F Empirical for row n:
%F n=1: [polynomial of degree 6]
%F n=2: [polynomial of degree 7]
%F n=3: [polynomial of degree 8]
%F n=4: [polynomial of degree 9]
%F n=5: [polynomial of degree 10]
%F n=6: [polynomial of degree 11]
%F n=7: [polynomial of degree 12]
%e Some solutions for n=3 k=4
%e ..2....1....0....0....0....2....0....0....0....0....2....0....1....0....1....2
%e ..1....0....0....3....3....3....3....0....3....2....2....4....3....3....0....1
%e ..1....1....4....2....1....0....0....4....1....0....1....3....1....2....1....0
%e ..4....3....0....2....1....1....3....2....0....2....1....0....0....0....0....1
%e ..1....0....3....2....3....1....1....0....4....0....1....0....1....1....1....1
%e ..1....0....1....0....0....2....4....1....1....0....4....2....4....3....2....4
%e ..1....1....0....2....0....4....0....1....1....2....3....1....2....0....1....0
%e ..1....2....3....3....2....1....1....3....3....1....1....2....0....1....2....3
%Y Column 1 is A133551(n+5)
%Y Column 2 is A212227
%Y Column 3 is A212466
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, May 05 2014