login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of triples (a,b,c) with 0 < a < b < c < p and a + b + c == 0 mod p, where p = prime(n).
2

%I #8 Oct 01 2018 03:33:33

%S 0,0,0,2,10,16,32,42,66,112,130,192,240,266,322,416,522,560,682,770,

%T 816,962,1066,1232,1472,1600,1666,1802,1872,2016,2562,2730,2992,3082,

%U 3552,3650,3952,4266,4482,4816,5162,5280,5890,6016,6272,6402,7210,8066,8362,8512

%N Number of triples (a,b,c) with 0 < a < b < c < p and a + b + c == 0 mod p, where p = prime(n).

%C a(n) is even. (Proof. Each triple (a,b,c) with b < p/2 pairs uniquely with a triple (a',b',c') = (p-c,p-b,p-a) with b' > p/2.)

%H Fausto A. C. Cariboni, <a href="/A242089/b242089.txt">Table of n, a(n) for n = 1..1000</a>

%H Steven J. Miller, <a href="http://arxiv.org/pdf/1406.3558.pdf">Combinatorial and Additive Number Theory Problem Sessions</a>, arXiv:1406.3558 [math.NT]. See Nathan Kaplan's Problem 2014.1.4 on p. 30.

%F a(n) = 2*A242090(n).

%e For prime(4) = 7 there are 2 triples (a,b,c) with 0 < a < b < c < 7 and a + b + c == 0 mod 7, namely, 1+2+4 = 7 and 3+5+6 = 2*7, so a(4) = 2.

%t Table[ Length[ Reduce[ Mod[a + b + c, Prime[n]] == 0 && 0 < a < b < c < Prime[n], {a, b, c}, Integers]], {n, 40}]

%Y Cf. A242090.

%K nonn

%O 1,4

%A _Jonathan Sondow_, Jun 16 2014

%E a(41)-a(50) from _Fausto A. C. Cariboni_, Sep 30 2018