Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 23 2014 13:53:48
%S 1,0,6,6,36,88,376,1096,4476,14200,57284,190206,764812,2615268,
%T 10499504,36677626,147110276,522288944
%N Number of balanced orbitals over an odd number of sectors.
%C See A241810 and A232500 for the combinatorial definitions.
%F a(n) = A241810(2*n+1).
%t np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--]; For[j=Length[z],z[[j]]<=z[[i-1]],j--]; Join[Take[z,i-2],{z[[j]]}, Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]]; o=Table[1,{16}];
%t Print[1]; Do[p=Join[-Take[o,n],{0},Take[o,n]]; c=0; Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++]; p=np[p],{(2*n+1)!/(2*n!^2)}]; Print[2*c],{n,16}]
%t (* _Hans Havermann_, May 10 2014 *)
%o (Sage)
%o def A242087(n):
%o if n == 0: return 1
%o A = 0; T = [0]
%o for i in (1..n):
%o T.append(-1); T.append(1)
%o for p in Permutations(T):
%o P = 0; S = 0
%o for k in (0..2*n):
%o P += p[k]; S += P
%o if S == 0: A += 1
%o return A
%o [A242087(n) for n in (0..10)]
%K nonn,more
%O 0,3
%A _Peter Luschny_, May 04 2014
%E More terms from _Hans Havermann_, May 10 2014
%E a(17) from _Hans Havermann_, May 23 2014