login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that prime factorization n = p_1^k_1*p_2^k_2*...*p_r^k_r satisfies k_1 >= k_2 >= ... >= k_r.
19

%I #50 Jul 11 2020 23:45:24

%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,

%T 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,

%U 52,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72

%N Numbers n such that prime factorization n = p_1^k_1*p_2^k_2*...*p_r^k_r satisfies k_1 >= k_2 >= ... >= k_r.

%C Complement sequence begins 18, 50, 54, 75, 90, 98, ... (A071365).

%H Jens Kruse Andersen, <a href="/A242031/b242031.txt">Table of n, a(n) for n = 1..10000</a>

%e 12 = 2^2*3^1 is in the sequence, but 18 = 2^1*3^2 is not.

%p filter:= proc(n)

%p local F;

%p F:= ifactors(n)[2];

%p F:= sort(F,(s,t) -> s[1]>t[1]);

%p ListTools:-Sorted(map(t -> t[2],F));

%p end:

%p select(filter, [$1..100]); # _Robert Israel_, Aug 18 2014

%t Select[Range[100], GreaterEqual @@ (FactorInteger[#][[All, 2]]) &]

%o (PARI) s=[]; for(n=1, 10^3, m=factor(n)[,2]; if(vecsort(m,,4)==m, s=concat(s, n))); s \\ _Jens Kruse Andersen_, Aug 18 2014

%Y Cf. A071365, A304686 (strictly decreasing).

%K nonn

%O 1,2

%A _Jean-François Alcover_, Aug 14 2014