The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241958 Duplicate of A217800. 2
 1, 2, 12, 110, 1274, 17136, 255816, 4124406, 70549050, 1264752060, 23555382240, 452806924752, 8939481277552, 180551099694400, 3719061442253520, 77933728043586630, 1658001861319441050, 35749633305661575300, 780123576993991461000, 17208112644166765652100, 383292388823513983713900 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is a duplicate of A217800 or of A007724. - Alois P. Heinz, Aug 22 2016 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 K. Gorska and K. A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008, 2013 FORMULA O.g.f.(in Maple notation): hypergeom([1/2, 1, 4/3, 5/3], [2, 5/2, 3], 27*z); a(n) ~ (1/93312)*sqrt(3)*27^n*(314928*n^4-1644624*n^3+5545260*n^2 -15387660*n+38310503)/(Pi*n^8), for n -> infinity. Representation of a(n) as the n-th power moment of a positive function on the segment [0,27]: a(n) = int(x^n*W(x),x=0..27),n=0,1,2..., where W(x) = 1/(Pi*sqrt(x))+sqrt(x)/Pi-(9/20)*sqrt(3)*2^(1/3)* hypergeom([-2/3, -1/6, 1/3], [2/3, 11/6], (1/27)*x)*x^(1/3)/ (sqrt(Pi)*Gamma(5/6)*Gamma(2/3))-(27/56)*2^(2/3)*Gamma(5/6) *Gamma(2/3)*hypergeom([-1/3, 1/6, 2/3], [4/3, 13/6], (1/27)*x)* x^(2/3)/Pi^(5/2). W(x) for x->0 has the singularity 1/sqrt(x), W(27)=0. This is the solution of the Hausdorff moment problem and is unique. a(n) = (1/2)*(n+3)!/((4*(n+1)^2-1)*(n+1)!)*A005789(n), where A005789(n) are the three-dimensional Catalan numbers (see the Gorska and Penson link). a(n) = A006480(n+1)/((2+n)*(1+2*n)*(3+2*n)). - Peter Luschny, Aug 15 2014 a(n) = (-1)^n*hypergeom([-2-2*n,-2*n,-2*n-1],[2,3],1). - Peter Luschny, Aug 29 2014 (2*n+3)*(n+2)*(n+1)*a(n) -3*(3*n+2)*(2*n-1)*(3*n+1)*a(n-1)=0. - R. J. Mathar, Jun 14 2016 MAPLE a := n -> (-1)^n*hypergeom([-2-2*n, -2*n, -2*n-1], [2, 3], 1): seq(round(evalf(a(n), 32)), n=0..20); # Peter Luschny, Aug 29 2014 MATHEMATICA Table[(3 n + 3)!/((4 (n + 1)^2 - 1) ((n + 1)!)^2 (n + 2)!), {n, 0, 20}] (* Vincenzo Librandi, Aug 30 2014 *) Table[(-1)^n HypergeometricPFQ[{-2 - 2 n, -2 n, -2 n - 1}, {2, 3}, 1], {n, 0, 20}] (* Michael De Vlieger, Aug 22 2016 *) PROG (PARI) a(n) = (3*n+3)!/((4*(n+1)^2-1)*((n+1)!)^2*(n+2)!); \\ Michel Marcus, Aug 10 2014 (Magma) [Factorial(3*n+3)/((4*(n+1)^2-1)*Factorial((n+1))^2*Factorial(n+ 2)): n in [0..20]]; // Vincenzo Librandi, Aug 30 2014 CROSSREFS Sequence in context: A235601 A007724 A217800 * A217802 A126778 A158832 Adjacent sequences: A241955 A241956 A241957 * A241959 A241960 A241961 KEYWORD dead AUTHOR Karol A. Penson, Aug 10 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 00:51 EDT 2024. Contains 373362 sequences. (Running on oeis4.)