%I
%S 116,2727,28153,179145,829867,3072022,9624440,26502761,65852820,
%T 150474973,320706893,644489313,1231612799,2253333900,3968755944,
%U 6759593329,11175178396,17989826867,28274951385,43488602905,65585426555
%N Number of length 5+4 0..n arrays with no consecutive five elements summing to more than 2*n
%C Row 5 of A241936
%H R. H. Hardin, <a href="/A241941/b241941.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (8329/181440)*n^9 + (5921/10080)*n^8 + (19841/6048)*n^7 + (7589/720)*n^6 + (186613/8640)*n^5 + (42487/1440)*n^4 + (15382/567)*n^3 + (20623/1260)*n^2 + (1873/315)*n + 1
%e Some solutions for n=4
%e ..0....1....0....1....0....0....0....0....0....0....2....1....0....1....0....1
%e ..0....4....3....1....1....1....1....2....0....4....0....0....4....0....0....1
%e ..2....0....0....3....1....3....4....3....2....2....1....2....1....0....0....2
%e ..0....0....2....0....4....1....2....1....0....1....1....2....1....4....2....1
%e ..1....0....0....0....0....2....1....0....0....0....0....2....0....0....1....0
%e ..0....2....3....3....0....1....0....0....0....0....3....1....1....0....3....3
%e ..1....2....0....1....3....1....0....3....0....3....0....1....0....0....0....0
%e ..0....2....0....2....1....0....1....0....3....1....1....0....1....0....0....1
%e ..1....0....4....1....2....0....2....3....4....2....0....0....2....4....1....3
%K nonn
%O 1,1
%A _R. H. Hardin_, May 02 2014
