Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Oct 31 2018 05:32:28
%S 71,1187,9500,49355,193179,619132,1710198,4211175,9462805,19735067,
%T 38684438,71962709,128007725,219049200,362365540,581830389,909790395,
%U 1389318475,2076889640,3045529223,4388486135,6223486556,8697626250
%N Number of length 4+4 0..n arrays with no consecutive five elements summing to more than 2*n.
%H R. H. Hardin, <a href="/A241940/b241940.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1391/20160)*n^8 + (197/252)*n^7 + (1819/480)*n^6 + (3719/360)*n^5 + (5593/320)*n^4 + (1369/72)*n^3 + (66343/5040)*n^2 + (2257/420)*n + 1.
%F Conjectures from _Colin Barker_, Oct 31 2018: (Start)
%F G.f.: x*(71 + 548*x + 1373*x^2 + 623*x^3 + 222*x^4 - 83*x^5 + 36*x^6 - 9*x^7 + x^8) / (1 - x)^9.
%F a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
%F (End)
%e Some solutions for n=4:
%e ..3....0....1....0....1....1....0....0....0....1....0....3....1....0....1....3
%e ..2....1....4....0....0....0....3....2....2....0....0....1....3....2....3....1
%e ..1....3....0....1....0....1....0....0....0....1....4....0....1....2....2....0
%e ..0....1....0....1....4....2....1....0....2....1....0....0....1....2....0....4
%e ..0....1....3....0....1....0....2....0....0....0....0....1....0....1....0....0
%e ..3....0....0....0....1....2....1....1....1....2....2....4....2....0....0....3
%e ..2....1....0....1....1....0....0....4....1....0....2....2....0....0....1....1
%e ..1....4....3....2....0....1....0....3....4....3....3....1....1....3....1....0
%Y Row 4 of A241936.
%K nonn
%O 1,1
%A _R. H. Hardin_, May 02 2014