login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(bell(2n)/bell(n)^2), bell = A000110.
0

%I #10 Jul 23 2021 03:20:34

%S 1,2,3,8,18,42,102,248,611,1525,3845,9787,25118,64944,169047,442727,

%T 1165990,3086692,8210400,21936230,58851484,158502600,428446818,

%U 1162110731,3162318827,8631705612,23629386708,64865101678,178531867765,492622401009,1362567996602,3777490059587,10495626146222,29223682273897,81535625627546,227935763726546,638409001899851

%N a(n) = floor(bell(2n)/bell(n)^2), bell = A000110.

%C a(n) is the largest integer smaller than the (reciprocal) proportion of partitions of the set {1,..,2n} that refine the partition {1,..,n|n+1,..,2*n}.

%t Table[Floor[BellB[2*n]/BellB[n]^2], {n,0,30}] (* _Vaclav Kotesovec_, Jul 23 2021 *)

%o (GAP) QuoInt(Bell(2*n),Bell(n)^2)

%Y Cf. A000110.

%K nonn

%O 0,2

%A _Nick Loughlin_, May 01 2014