login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241897
Primes p equal to the sum in base 3 of the digits of all primes < p - digit-sum of the index of prime p(i-1).
1
67, 71, 97, 101, 149, 223, 656267, 697511, 697951, 698447, 699493, 700277, 715373, 883963, 888203, 888211, 992021, 992183, 992891, 993241, 994181, 1155607, 1155829, 1308121, 1308649, 1310093, 1313083, 1317409, 1320061, 1320157, 1320379, 1322521, 1322591
OFFSET
1,1
COMMENTS
There are no further solutions beyond a(46)=4539541 up to at least 10^10. - Andrew Howroyd, Mar 02 2018
LINKS
FORMULA
prime(n) such that, using base 3, prime(n) = sum_{1..n-1} A239619(i) - sum_{index(n-1)}
EXAMPLE
67 = digit-sum(2..61,b=3) - digit-sum(index(61),b=3) = sum(2) + sum(1,0) + sum(1,2) + sum(2,1) + sum(1,0,2) + sum(1,1,1) + sum(1,2,2) + sum(2,0,1) + sum(2,1,2) + sum(1,0,0,2) + sum(1,0,1,1) + sum(1,1,0,1) + sum(1,1,1,2) + sum(1,1,2,1) + sum(1,2,0,2) + sum(1,2,2,2) + sum(2,0,1,2) + sum(2,0,2,1) - digit-sum(200).
PROG
(PARI)
seq(maxp)={my(p=1, L=List(), s=0, k=0); while(p<maxp, p=nextprime(p+1); if(p==s-vecsum(digits(k, 3)), listput(L, p)); k++; s+=vecsum(digits(p, 3))); Vec(L)}
seq(1e7) \\ Andrew Howroyd, Mar 01 2018
CROSSREFS
A240886. Primes p equal to the digit-sum in base 3 of all primes < p. A168161. Primes p which are equal to the sum of the binary digits in all primes <= p.
Sequence in context: A073523 A295803 A033243 * A225626 A345214 A277429
KEYWORD
nonn,base
AUTHOR
Anthony Sand, May 01 2014
EXTENSIONS
a(29)-a(33) from Andrew Howroyd, Mar 02 2018
STATUS
approved