Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jan 18 2025 13:31:28
%S 18,19,22,27,34,43,54,67,82,99,118,139,162,187,214,243,274,307,342,
%T 379,418,459,502,547,594,643,694,747,802,859,918,979,1042,1107,1174,
%U 1243,1314,1387,1462,1539,1618,1699,1782,1867,1954,2043,2134,2227,2322,2419,2518
%N a(n) = n^2 + 18.
%H Vincenzo Librandi, <a href="/A241848/b241848.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: (18 - 35*x + 19*x^2)/(1 - x)^3.
%F a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
%F From _Amiram Eldar_, Nov 03 2020: (Start)
%F Sum_{n>=0} 1/a(n) = (1 + sqrt(18)*Pi*coth(sqrt(18)*Pi))/36.
%F Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(18)*Pi*cosech(sqrt(18)*Pi))/36. (End)
%F E.g.f.: exp(x)*(18 + x + x^2). - _Elmo R. Oliveira_, Nov 29 2024
%t Table[n^2 + 18, {n, 0, 60}]
%t LinearRecurrence[{3,-3,1},{18,19,22},60] (* _Harvey P. Dale_, Jan 18 2025 *)
%o (Magma) [n^2+18: n in [0..60]];
%o (PARI) a(n)=n^2+18 \\ _Charles R Greathouse IV_, Jun 17 2017
%Y Cf. similar sequences listed in A114962.
%K nonn,easy,changed
%O 0,1
%A _Vincenzo Librandi_, May 01 2014