login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions p = [x(1), ..., x(k)], where x(1) >= x(2) >= ... >= x(k), of n such that max(x(i) - x(i-1)) <= number of distinct parts of p.
5

%I #4 May 06 2014 15:06:28

%S 1,1,2,3,5,6,9,11,17,20,30,37,50,64,84,106,141,178,224,290,368,457,

%T 574,722,894,1113,1371,1693,2082,2555,3108,3806,4630,5605,6787,8197,

%U 9881,11877,14256,17047,20395,24320,28958,34409,40867,48333,57243,67548,79683

%N Number of partitions p = [x(1), ..., x(k)], where x(1) >= x(2) >= ... >= x(k), of n such that max(x(i) - x(i-1)) <= number of distinct parts of p.

%F a(n) = A241818(n) + A241820(n) for n >= 0.

%F a(n) + A241822(n) = A000041(n) for n >= 0.

%e a(6)= 9 counts all of the 11 partitions of 6 except 51, 411.

%t z = 30; f[n_] := f[n] = IntegerPartitions[n]; d[p_] := d[p] = Length[DeleteDuplicates[p]]; g[p_] := Max[-Differences[p]];

%t Table[Count[f[n], p_ /; g[p] < d[p]], {n, 0, z}] (* A241818 *)

%t Table[Count[f[n], p_ /; g[p] <= d[p]], {n, 0, z}] (* A241819 *)

%t Table[Count[f[n], p_ /; g[p] == d[p]], {n, 0, z}] (* A241820 *)

%t Table[Count[f[n], p_ /; g[p] >= d[p]], {n, 0, z}] (* A241821 *)

%t Table[Count[f[n], p_ /; g[p] > d[p]], {n, 0, z}] (* A241822 *)

%Y Cf. A241818, A241820, A241821, A241822, A000041.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_, Apr 30 2014