login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest k such that the number of the first even exponents in prime power factorization of (2*k)! is n, or a(n)=0 if there is no such k.
1

%I #28 Apr 08 2020 04:19:39

%S 1,6,3,5,10,24,27,169,924,3168,720,3208,408,35421,50878,73920,18757,

%T 204513,134418,295680,427684,2746710,6867848,14476645,7278558,3668406,

%U 737564,245340483,1931850660,1514239096,3228582476,1325085081,16188866895,33517640073

%N Smallest k such that the number of the first even exponents in prime power factorization of (2*k)! is n, or a(n)=0 if there is no such k.

%C Conjecture: 1) All a(n)>0; 2) a(2*n+1)>a(2*n).

%C Conjecture (2) is wrong because a(24) = 7278558 >= a(25) = 3668406.

%C a(35) > 10^11; a(36) = 8036409193. - _Hiroaki Yamanouchi_, Sep 29 2014

%D P. Erdős, P. L. Graham, Old and new problems and results in combinatorial number theory, L'Enseignement Mathematique, Imprimerie Kunding, Geneva, 1980.

%H Giovanni Resta, <a href="/A241786/b241786.txt">Table of n, a(n) for n = 0..44</a> (terms a(0)-a(34) and a(36) from Hiroaki Yamanouchi)

%H D. Berend, <a href="http://dx.doi.org/10.1006/jnth.1997.2106">Parity of exponents in the factorization of n!</a>, J. Number Theory, 64 (1997), 13-19.

%e a(2)=3, since (2*3)!= 2^4*3^2*5, and here the number of the first even exponents is 2.

%o (PARI) nbev(n) = {f = factor(n); nbe = 0; i = 1; while ((i <= #f~) && ((f[i, 2] % 2) == 0), i++; nbe++); nbe;}

%o a(n) = {k = 0; while(nbev((2*k)!) != n, k++); k;} \\ _Michel Marcus_, Apr 30 2014

%Y Cf. A240537, A240606, A240620.

%K nonn

%O 0,2

%A _Vladimir Shevelev_, Apr 28 2014

%E More terms from _Peter J. C. Moses_, May 06 2014

%E a(21)-a(33) from _Hiroaki Yamanouchi_, Sep 29 2014