login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of Carlitz compositions of n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.
14

%I #21 Apr 30 2017 09:49:38

%S 1,1,1,2,1,2,2,3,4,4,8,2,5,13,5,6,21,12,8,33,27,3,10,50,53,11,12,73,

%T 98,31,15,106,174,78,5,18,150,296,175,22,22,209,486,363,72,27,289,781,

%U 715,204,8,32,393,1222,1342,510,43,38,529,1874,2421,1168,159

%N Number T(n,k) of Carlitz compositions of n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.

%C No two adjacent parts of a Carlitz composition are equal.

%H Alois P. Heinz, <a href="/A241701/b241701.txt">Rows n = 0..250, flattened</a>

%F Sum_{k=0..floor(n/3)} (k+1) * T(n,k) = A285994(n) (for n>0).

%e T(6,0) = 4: [6], [1,5], [2,4], [1,2,3].

%e T(6,1) = 8: [4,2], [5,1], [3,1,2], [1,3,2], [1,4,1], [2,3,1], [2,1,3], [1,2,1,2].

%e T(6,2) = 2: [3,2,1], [2,1,2,1].

%e T(7,0) = 5: [7], [3,4], [1,6], [2,5], [1,2,4].

%e T(7,1) = 13: [4,3], [6,1], [5,2], [2,1,4], [4,1,2], [1,4,2], [2,3,2], [3,1,3], [1,5,1], [2,4,1], [1,2,3,1], [1,3,1,2], [1,2,1,3].

%e T(7,2) = 5: [4,2,1], [2,1,3,1], [3,1,2,1], [1,3,2,1], [1,2,1,2,1].

%e Triangle T(n,k) begins:

%e 00: 1;

%e 01: 1;

%e 02: 1;

%e 03: 2, 1;

%e 04: 2, 2;

%e 05: 3, 4;

%e 06: 4, 8, 2;

%e 07: 5, 13, 5;

%e 08: 6, 21, 12;

%e 09: 8, 33, 27, 3;

%e 10: 10, 50, 53, 11;

%e 11: 12, 73, 98, 31;

%e 12: 15, 106, 174, 78, 5;

%e 13: 18, 150, 296, 175, 22;

%e 14: 22, 209, 486, 363, 72;

%e 15: 27, 289, 781, 715, 204, 8;

%p b:= proc(n, i) option remember; `if`(n=0, 1, expand(

%p add(`if`(j=i, 0, b(n-j, j)*`if`(j<i, x, 1)), j=1..n)))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):

%p seq(T(n), n=0..20);

%t b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[If[j == i, 0, b[n-j, j]*If[j<i, x, 1]], {j, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Feb 13 2015, after _Alois P. Heinz_ *)

%Y Columns k=0-10 give: A000009, A241691, A241692, A241693, A241694, A241695, A241696, A241697, A241698, A241699, A241700.

%Y Row sums give A003242.

%Y T(3n,n) = A000045(n+1).

%Y T(3n+1,n) = A129715(n) for n>0.

%Y Cf. A238344, A285994.

%K nonn,tabf

%O 0,4

%A _Alois P. Heinz_, Apr 27 2014