login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of iterations of A241663 needed to reach either 0 or 1.
2

%I #21 Oct 01 2018 21:06:52

%S 1,1,1,1,1,1,2,1,1,1,3,1,2,1,1,1,3,1,2,1,1,1,3,1,2,1,1,1,3,1,2,1,1,1,

%T 2,1,2,1,1,1,3,1,2,1,1,1,3,1,2,1,1,1,3,1,3,1,1,1,4,1,2,1,1,1,2,1,2,1,

%U 1,1,3,1,2,1,1,1,2,1,2,1,1,1,3,1,3,1,1,1,4,1,2,1,1,1,2,1,2,1,1,1,3,1,2,1,1

%N Number of iterations of A241663 needed to reach either 0 or 1.

%C It might be more natural to define the initial terms as a(0) = a(1) = 0 for the sake of recurrence. - _Antti Karttunen_, Oct 01 2018

%H Antti Karttunen, <a href="/A241665/b241665.txt">Table of n, a(n) for n = 1..65537</a>

%H C. Defant, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Defant/defant5.html">On Arithmetic Functions Related to Iterates of the Schemmel Totient Functions</a>, J. Int. Seq. 18 (2015) # 15.2.1

%H Colin Defant, <a href="/A241665/a241665.py.txt">Python program</a>

%e A241663(11)=7, A241663(7)=3, A241663(3)=0. Thus, a(11)=3.

%o (Python) See Defant link. Enter m=4, as well as starting and ending values of n. The third string of numbers will be this sequence.

%o (PARI)

%o A241663(n) = {my(f = factor(n)); prod(i=1, #f~, if ((f[i, 1] == 2) || (f[i, 1] == 3), 0, f[i, 1]^(f[i, 2]-1)*(f[i, 1]-4))); } \\ From A241663

%o A241665(n) = { my(s=(1==n)); while(n>1, n = A241663(n); s++); (s); }; \\ _Antti Karttunen_, Oct 01 2018

%Y Cf. A241663, A241668.

%K nonn

%O 1,7

%A _Colin Defant_, Apr 26 2014

%E More terms from _Alois P. Heinz_, Apr 30 2014

%E Terms a(88) .. a(105) from _Antti Karttunen_, Oct 01 2018