%I
%S 1,0,1,0,2,0,3,1,6,4,10,11,20,23,32,44,56,76,86,124,136,193,199,293,
%T 297,430,422,619,609,884,855,1246,1217,1742,1708,2438,2423,3393,3415,
%U 4717,4845,6558,6828,9097,9653,12585,13549,17379,18987,23897,26420,32712
%N Number of partitions p of n such that (number of even numbers in p) >= 2*(number of odd numbers in p).
%C Each number in p is counted once, regardless of its multiplicity.
%F a(n) = A241643(n) + A241645(n) for n >= 0.
%F a(n) + A241641(n) = A000041(n) for n >= 0.
%e a(6) counts these 3 partitions: 6, 42, 222.
%t z = 30; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0]; s1[p_] := Count[Mod[DeleteDuplicates[p], 2], 1];
%t Table[Count[f[n], p_ /; s0[p] < 2 s1[p]], {n, 0, z}] (* A241641 *)
%t Table[Count[f[n], p_ /; s0[p] <= 2 s1[p]], {n, 0, z}] (* A241642 *)
%t Table[Count[f[n], p_ /; s0[p] == 2 s1[p]], {n, 0, z}] (* A241643 *)
%t Table[Count[f[n], p_ /; s0[p] >= 2 s1[p]], {n, 0, z}] (* A241644 *)
%t Table[Count[f[n], p_ /; s0[p] > 2 s1[p]], {n, 0, z}] (* A241645 *)
%Y Cf. A241641, A241642, A241643, A241645.
%K nonn,easy
%O 0,5
%A _Clark Kimberling_, Apr 27 2014
