login
Number of length n+2 0..10 arrays with no consecutive three elements summing to more than 10
1

%I #4 Apr 26 2014 07:26:28

%S 286,1716,10296,57772,332761,1934647,11151140,64309245,371651553,

%T 2146210209,12390321340,71551367152,413187460923,2385868376437,

%U 13777070958198,79555740077836,459390493737184,2652727959027373

%N Number of length n+2 0..10 arrays with no consecutive three elements summing to more than 10

%C Column 10 of A241619

%H R. H. Hardin, <a href="/A241616/b241616.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) +4*a(n-2) +58*a(n-3) -78*a(n-4) -159*a(n-5) -909*a(n-6) +761*a(n-7) +1451*a(n-8) +7084*a(n-9) -5129*a(n-10) -7602*a(n-11) -33049*a(n-12) +23250*a(n-13) +26712*a(n-14) +107336*a(n-15) -72542*a(n-16) -66812*a(n-17) -258108*a(n-18) +162166*a(n-19) +126592*a(n-20) +479031*a(n-21) -276610*a(n-22) -189293*a(n-23) -706355*a(n-24) +371226*a(n-25) +228305*a(n-26) +843837*a(n-27) -403306*a(n-28) -222601*a(n-29) -830468*a(n-30) +361204*a(n-31) +179763*a(n-32) +682137*a(n-33) -270438*a(n-34) -119839*a(n-35) -471812*a(n-36) +170926*a(n-37) +67510*a(n-38) +276111*a(n-39) -91509*a(n-40) -31853*a(n-41) -138152*a(n-42) +41556*a(n-43) +12872*a(n-44) +58410*a(n-45) -16134*a(n-46) -4297*a(n-47) -21419*a(n-48) +5183*a(n-49) +1259*a(n-50) +6439*a(n-51) -1462*a(n-52) -282*a(n-53) -1735*a(n-54) +310*a(n-55) +59*a(n-56) +345*a(n-57) -63*a(n-58) -7*a(n-59) -68*a(n-60) +7*a(n-61) +a(n-62) +7*a(n-63) -a(n-64) -a(n-66)

%e Some solutions for n=5

%e ..1....1....1....0....0....1....0....1....0....1....1....1....0....0....1....0

%e ..0....1....0....2....0....1....2....4....5....3....0....1....3....1....0....4

%e ..2....6....5....2....8....5....2....2....0....6....7....3....5....6....3....3

%e ..4....2....3....3....0....3....1....2....3....1....2....3....1....0....1....1

%e ..0....1....2....0....1....2....3....0....2....3....1....1....2....3....1....0

%e ..2....1....1....6....3....3....1....4....0....0....7....4....2....1....4....2

%e ..7....3....6....4....5....3....0....2....6....0....1....1....6....4....0....6

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 26 2014