login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length n+2 0..10 arrays with no consecutive three elements summing to more than 10
1

%I #4 Apr 26 2014 07:26:28

%S 286,1716,10296,57772,332761,1934647,11151140,64309245,371651553,

%T 2146210209,12390321340,71551367152,413187460923,2385868376437,

%U 13777070958198,79555740077836,459390493737184,2652727959027373

%N Number of length n+2 0..10 arrays with no consecutive three elements summing to more than 10

%C Column 10 of A241619

%H R. H. Hardin, <a href="/A241616/b241616.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) +4*a(n-2) +58*a(n-3) -78*a(n-4) -159*a(n-5) -909*a(n-6) +761*a(n-7) +1451*a(n-8) +7084*a(n-9) -5129*a(n-10) -7602*a(n-11) -33049*a(n-12) +23250*a(n-13) +26712*a(n-14) +107336*a(n-15) -72542*a(n-16) -66812*a(n-17) -258108*a(n-18) +162166*a(n-19) +126592*a(n-20) +479031*a(n-21) -276610*a(n-22) -189293*a(n-23) -706355*a(n-24) +371226*a(n-25) +228305*a(n-26) +843837*a(n-27) -403306*a(n-28) -222601*a(n-29) -830468*a(n-30) +361204*a(n-31) +179763*a(n-32) +682137*a(n-33) -270438*a(n-34) -119839*a(n-35) -471812*a(n-36) +170926*a(n-37) +67510*a(n-38) +276111*a(n-39) -91509*a(n-40) -31853*a(n-41) -138152*a(n-42) +41556*a(n-43) +12872*a(n-44) +58410*a(n-45) -16134*a(n-46) -4297*a(n-47) -21419*a(n-48) +5183*a(n-49) +1259*a(n-50) +6439*a(n-51) -1462*a(n-52) -282*a(n-53) -1735*a(n-54) +310*a(n-55) +59*a(n-56) +345*a(n-57) -63*a(n-58) -7*a(n-59) -68*a(n-60) +7*a(n-61) +a(n-62) +7*a(n-63) -a(n-64) -a(n-66)

%e Some solutions for n=5

%e ..1....1....1....0....0....1....0....1....0....1....1....1....0....0....1....0

%e ..0....1....0....2....0....1....2....4....5....3....0....1....3....1....0....4

%e ..2....6....5....2....8....5....2....2....0....6....7....3....5....6....3....3

%e ..4....2....3....3....0....3....1....2....3....1....2....3....1....0....1....1

%e ..0....1....2....0....1....2....3....0....2....3....1....1....2....3....1....0

%e ..2....1....1....6....3....3....1....4....0....0....7....4....2....1....4....2

%e ..7....3....6....4....5....3....0....2....6....0....1....1....6....4....0....6

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 26 2014