Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 30 2023 03:47:57
%S 1,1,1,1,2,1,1,3,5,1,1,4,11,15,1,1,5,19,49,52,1,1,6,29,109,257,203,1,
%T 1,7,41,201,742,1539,877,1,1,8,55,331,1657,5815,10299,4140,1,1,9,71,
%U 505,3176,15821,51193,75905,21147,1,1,10,89,729,5497,35451,170389,498118,609441,115975,1
%N Square array read by antidiagonals upwards: T(n,k) = Sum_{j=1..k} n^(k-j)*Stirling_2(k,j) (n >= 0, k >= 1).
%H Adalbert Kerber, <a href="https://doi.org/10.1016/0012-365X(78)90163-2">A matrix of combinatorial numbers related to the symmetric groups</a>, Discrete Math., 21 (1978), 319-321.
%H Adalbert Kerber, <a href="/A004211/a004211.pdf">A matrix of combinatorial numbers related to the symmetric groups</a>, Discrete Math., 21 (1978), 319-321. [Annotated scanned copy]
%e Array begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, ...
%e 1, 3, 11, 49, 257, 1539, 10299, 75905, 609441, 5284451, 49134923, 487026929, ...
%e 1, 4, 19, 109, 742, 5815, 51193, 498118, 5296321, 60987817, 754940848, 9983845261, ...
%e 1, 5, 29, 201, 1657, 15821, 170389, 2032785, 26546673, 376085653, 5736591885, 93614616409, ...
%e 1, 6, 41, 331, 3176, 35451, 447981, 6282416, 96546231, 1611270851, 28985293526, 558413253581, ...
%e 1, 7, 55, 505, 5497, 69823, 1007407, 16157905, 284214097, 5432922775, 112034017735, 2476196276617, ...
%e 1, 8, 71, 729, 8842, 125399, 2026249, 36458010, 719866701, 15453821461, 358100141148, 8899677678109, ...
%e ...
%p with(combinat):
%p T:=(n,k)->add(n^(k-j)*stirling2(k,j),j=1..k);
%p r:=n->[seq(T(n,k),k=1..12)];
%p for n from 0 to 8 do lprint(r(n)); od:
%Y Three versions of this array are A111673, A241578, A241579.
%Y Rows and columns give A000110, A004211, A004212, A004213, A005011, A005012, A028387, A241577.
%K nonn,tabl
%O 0,5
%A _N. J. A. Sloane_, Apr 29 2014