%I #4 Apr 25 2014 21:18:19
%S 0,0,1,2,5,8,12,17,22,27,34,41,50,60,70,80,92,105,119,134,149,164,181,
%T 198,216,235,254,274,296,318,341,365,390,415,441,467,494,522,551,580,
%U 611,642,675,709,743,778,815,853,891,930,969,1008,1049,1090,1131
%N Number of 2element subsets of {1,...,n} whose sum has more than 2 divisors.
%C If the constraint on the number of divisors is dropped, one gets A000217 = triangular numbers n*(n+1)/2, which therefore is an upper bound.
%C If one considers 3element subsets instead, one gets A241563.
%o (PARI) a(n,m=2,d=2)={s=0;u=vector(m,n,1)~;forvec(v=vector(m,i,[1,n]),numdiv(v*u)>d&&s++,2);s}
%K nonn
%O 1,4
%A _M. F. Hasler_, Apr 25 2014
