login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, number of orbitals classified with respect to the first zero crossing, n>=1, 1<=k<=n.
13

%I #20 Mar 05 2020 07:05:17

%S 1,0,2,2,2,2,0,4,0,2,6,12,4,2,6,0,12,0,4,0,4,20,60,12,12,12,4,20,0,40,

%T 0,12,0,8,0,10,70,280,40,60,36,24,40,10,70,0,140,0,40,0,24,0,20,0,28,

%U 252,1260,140,280,120,120,120,60,140,28,252,0,504,0

%N Triangle read by rows, number of orbitals classified with respect to the first zero crossing, n>=1, 1<=k<=n.

%C For the combinatorial definitions see A232500. An orbital w over n sectors has its first zero crossing at k if k is the smallest j such that the partial sum(1<=i<=j, w(i))) = 0, where w(i) are the jumps of the orbital represented by -1, 0, 1.

%F If n is even and k is odd then T(n, k) = 0 else if k = 1 then T(n, 1) = A056040(n-1) else T(n, k) = 2*A057977(k-2)*A056040(n-k).

%F T(n, n) = A241543(n).

%F T(n+1, 1) = A126869(n).

%F T(2*n, 2*n) = |A002420(n)|.

%F T(2*n+1, 1) = A000984(n).

%F T(2*n+1, n+1) = A241530(n).

%F T(2*n+2, 2) = A028329(n).

%F T(4*n, 2*n) = |A010370(n)|.

%F T(4*n, 4*n) = |A024491(n)|.

%F T(4*n+1, 1) = A001448(n).

%F T(4*n+1, 2*n+1) = A002894(n).

%e [1], [ 1]

%e [2], [ 0, 2]

%e [3], [ 2, 2, 2]

%e [4], [ 0, 4, 0, 2]

%e [5], [ 6, 12, 4, 2, 6]

%e [6], [ 0, 12, 0, 4, 0, 4]

%e [7], [20, 60, 12, 12, 12, 4, 20]

%p A241477 := proc(n, k)

%p if n = 0 then 1

%p elif k = 0 then 0

%p elif irem(n, 2) = 0 and irem(k, 2) = 1 then 0

%p elif k = 1 then (n-1)!/iquo(n-1,2)!^2

%p else 2*(n-k)!*(k-2)!/iquo(k,2)/(iquo(k-2,2)!*iquo(n-k,2)!)^2

%p fi end:

%p for n from 1 to 9 do seq(A241477(n, k), k=1..n) od;

%t T[n_, k_] := Which[n == 0, 1, k == 0, 0, Mod[n, 2] == 0 && Mod[k, 2] == 1, 0, k == 1, (n-1)!/Quotient[n-1, 2]!^2, True, 2*(n-k)!*(k-2)!/Quotient[k, 2]/(Quotient[k-2, 2]!*Quotient[n-k, 2]!)^2];

%t Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 20 2018, from Maple *)

%o (Sage)

%o def A241477_row(n):

%o if n == 0: return [1]

%o Z = [0]*n; T = [0] if is_odd(n) else []

%o for i in (1..n//2): T.append(-1); T.append(1)

%o for p in Permutations(T):

%o i = 0; s = p[0]

%o while s != 0: i += 1; s += p[i];

%o Z[i] += 1

%o return Z

%o for n in (1..9): A241477_row(n)

%Y Row sums: A056040.

%Y Cf. A232500.

%K nonn,tabl

%O 1,3

%A _Peter Luschny_, Apr 23 2014