login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Value of concatenation of all suffixes of binary representation of n.
1

%I #7 Aug 08 2014 16:30:49

%S 0,1,4,7,32,43,52,63,512,587,660,735,800,875,948,1023,16384,17483,

%T 18580,19679,20768,21867,22964,24063,25088,26187,27284,28383,29472,

%U 30571,31668,32767,1048576,1082443,1116308,1150175,1184032,1217899,1251764,1285631

%N Value of concatenation of all suffixes of binary representation of n.

%C a(2^n) = 2^(n*(n+3)/2).

%H Reinhard Zumkeller, <a href="/A241426/b241426.txt">Table of n, a(n) for n = 0..8191</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%e . n | A007088(n) | suffixes | A007088(a(n)) | a(n)

%e . ----+------------+------------------+---------------+-----

%e . 2 | 10 | 10, 0 | 100 | 4

%e . 3 | 11 | 11, 1 | 111 | 7

%e . 4 | 100 | 100, 00, 0 | 100000 | 32

%e . 5 | 101 | 101, 01, 1 | 101011 | 43

%e . 6 | 110 | 110, 10, 0 | 110100 | 52

%e . 7 | 111 | 111, 11, 1 | 111111 | 63

%e . 8 | 1000 | 1000, 000, 00, 0 | 1000000000 | 512

%e . 9 | 1001 | 1001, 001, 01, 1 | 1001001011 | 587

%e . 10 | 1010 | 1010, 010, 10, 0 | 1010010100 | 660

%e . 11 | 1011 | 1011, 011, 11, 1 | 1011011111 | 735

%e . 12 | 1100 | 1100, 100, 00, 0 | 1100100000 | 800 .

%o (Haskell)

%o import Data.List (inits, unfoldr); import Data.Tuple (swap)

%o a241426 = foldr (\b v -> 2 * v + b) 0 . concat . inits .

%o unfoldr (\x -> if x == 0 then Nothing

%o else Just $ swap $ divMod x 2)

%Y Cf. A030308, A007088, A000079, A000096.

%K nonn,base

%O 0,3

%A _Reinhard Zumkeller_, Aug 08 2014