login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of 2Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4
1

%I #4 Apr 20 2014 10:26:11

%S 3,3,9,17,23,53,103,160,344,643,1059,2196,4039,6930,13970,25512,45059,

%T 88830,161841,291573,565051,1029968,1879844,3596548,6568902,12087395,

%U 22908471,41950860,77573588,146021963,268115989,497179651,931373038

%N Number of 2Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4

%C Row 2 of A241356

%H R. H. Hardin, <a href="/A241357/b241357.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-2) +8*a(n-3) -5*a(n-5) -18*a(n-6) +a(n-7) +10*a(n-8) +16*a(n-9) -5*a(n-10) -10*a(n-11) +a(n-12) +6*a(n-13) -2*a(n-14) -6*a(n-15) -a(n-16) +6*a(n-17) for n>20

%e Some solutions for n=4

%e ..2..3..3..2....2..3..3..2....2..3..3..3....3..2..3..3....3..2..3..3

%e ..2..1..1..1....2..1..1..2....2..1..2..3....3..1..1..3....3..2..2..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 20 2014