login
A241351
Number of n X 3 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.
1
4, 9, 19, 55, 72, 124, 243, 370, 695, 956, 1417, 2469, 3404, 5728, 8713, 12387, 19273, 29598, 44909, 73642, 107481, 163546, 255220, 378761, 599088, 925233, 1374249, 2146719, 3251091, 4948266, 7795540, 11712323, 17982730, 27767716, 41826534
OFFSET
1,1
COMMENTS
Column 3 of A241356.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-5) +4*a(n-6) +5*a(n-8) +2*a(n-9) +16*a(n-11) +3*a(n-13) +6*a(n-14) -10*a(n-15) -22*a(n-16) -2*a(n-17) -13*a(n-18) +26*a(n-19) -18*a(n-20) +18*a(n-21) -49*a(n-22) -2*a(n-23) -21*a(n-24) +18*a(n-25) +22*a(n-26) +61*a(n-27) -62*a(n-28) -13*a(n-29) -102*a(n-30) -32*a(n-31) +71*a(n-32) +43*a(n-33) +30*a(n-34) +53*a(n-35) -34*a(n-36) -204*a(n-37) +137*a(n-38) -22*a(n-39) +80*a(n-40) +108*a(n-41) +118*a(n-42) -242*a(n-43) +150*a(n-44) -100*a(n-45) +49*a(n-46) -3*a(n-47) +176*a(n-48) -162*a(n-49) +87*a(n-50) -118*a(n-51) +40*a(n-52) -89*a(n-53) +74*a(n-54) -11*a(n-55) +4*a(n-56) -65*a(n-57) +62*a(n-58) -91*a(n-59) +20*a(n-60) -22*a(n-61) +38*a(n-62) -20*a(n-63) +21*a(n-64) -19*a(n-65) +7*a(n-66) -5*a(n-67) +2*a(n-68) for n>85.
EXAMPLE
Some solutions for n=4
..3..2..2....3..2..2....3..2..3....2..3..3....3..2..2....3..2..3....3..2..3
..3..1..2....3..1..2....3..1..1....2..1..1....3..1..1....3..1..2....3..2..2
..2..3..3....2..3..2....2..3..3....3..2..2....2..3..3....2..3..3....2..3..3
..3..1..2....2..1..1....3..0..2....2..1..2....3..0..1....2..1..2....3..1..2
CROSSREFS
Cf. A241356.
Sequence in context: A326340 A183304 A359278 * A023377 A187408 A211055
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 20 2014
STATUS
approved