login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241351
Number of n X 3 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.
1
4, 9, 19, 55, 72, 124, 243, 370, 695, 956, 1417, 2469, 3404, 5728, 8713, 12387, 19273, 29598, 44909, 73642, 107481, 163546, 255220, 378761, 599088, 925233, 1374249, 2146719, 3251091, 4948266, 7795540, 11712323, 17982730, 27767716, 41826534
OFFSET
1,1
COMMENTS
Column 3 of A241356.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-5) +4*a(n-6) +5*a(n-8) +2*a(n-9) +16*a(n-11) +3*a(n-13) +6*a(n-14) -10*a(n-15) -22*a(n-16) -2*a(n-17) -13*a(n-18) +26*a(n-19) -18*a(n-20) +18*a(n-21) -49*a(n-22) -2*a(n-23) -21*a(n-24) +18*a(n-25) +22*a(n-26) +61*a(n-27) -62*a(n-28) -13*a(n-29) -102*a(n-30) -32*a(n-31) +71*a(n-32) +43*a(n-33) +30*a(n-34) +53*a(n-35) -34*a(n-36) -204*a(n-37) +137*a(n-38) -22*a(n-39) +80*a(n-40) +108*a(n-41) +118*a(n-42) -242*a(n-43) +150*a(n-44) -100*a(n-45) +49*a(n-46) -3*a(n-47) +176*a(n-48) -162*a(n-49) +87*a(n-50) -118*a(n-51) +40*a(n-52) -89*a(n-53) +74*a(n-54) -11*a(n-55) +4*a(n-56) -65*a(n-57) +62*a(n-58) -91*a(n-59) +20*a(n-60) -22*a(n-61) +38*a(n-62) -20*a(n-63) +21*a(n-64) -19*a(n-65) +7*a(n-66) -5*a(n-67) +2*a(n-68) for n>85.
EXAMPLE
Some solutions for n=4
..3..2..2....3..2..2....3..2..3....2..3..3....3..2..2....3..2..3....3..2..3
..3..1..2....3..1..2....3..1..1....2..1..1....3..1..1....3..1..2....3..2..2
..2..3..3....2..3..2....2..3..3....3..2..2....2..3..3....2..3..3....2..3..3
..3..1..2....2..1..1....3..0..2....2..1..2....3..0..1....2..1..2....3..1..2
CROSSREFS
Cf. A241356.
Sequence in context: A326340 A183304 A359278 * A023377 A187408 A211055
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 20 2014
STATUS
approved