login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 9^(9^9) = 9^^3.
11

%I #49 Jul 20 2021 20:34:28

%S 4,2,8,1,2,4,7,7,3,1,7,5,7,4,7,0,4,8,0,3,6,9,8,7,1,1,5,9,3,0,5,6,3,5,

%T 2,1,3,3,9,0,5,5,4,8,2,2,4,1,4,4,3,5,1,4,1,7,4,7,5,3,7,2,3,0,5,3,5,2,

%U 3,8,8,7,4,7,1,7,3,5,0,4,8,3,5,3,1,9,3,6,6,5,2,9,9,4,3,2,0,3,3,3,7,5,0,6,0

%N Decimal expansion of 9^(9^9) = 9^^3.

%C Decimal expansion of 3^774840978. - _Jianing Song_, Sep 15 2019

%D Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

%H Googlology Wiki, <a href="https://googology.wikia.org/wiki/Tetration#First_digits">First Digits</a>

%H Hans Havermann, <a href="http://chesswanks.com/seq/n%5En%5En/">n^n^n for n=1 to n=5</a>

%H Hans Havermann, <a href="http://chesswanks.com/seq/n%5en%5en/9%5e9%5e9/01">9^9^9, Volume 1, the first x decimal digits, in 1100 pages with 10000 digits per page.</a>

%H Math Forum, "Ask Dr. Math", <a href="http://mathforum.org/library/drmath/view/61451.html">Value of 9^(9^9)?</a>

%H Robert P. Munafo, <a href="http://mrob.com/pub/math/hyper4.html">Hyper4 Iterated Exponential Function</a>

%H Robert P. Munafo and Robert G. Wilson v, <a href="/A241298/a241298.txt"> Mathematica coding for "SuperPowerMod" from Vardi</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JoyceSequence.html">Joyce Sequence</a>

%H Robert G. Wilson v, <a href="/A133612/a133612_2.txt">Mathematica coding for "SuperPowerMod" from Vardi</a>

%F 9^(9^9) = ((((((((9^9)^9)^9)^9)^9)^9)^9)^9)^9.

%e = 42812477317574704803698711593056352133905548224144

%e 35141747537230535238874717350483531936652994320333

%e ... (369,692,900 digits omitted) ...

%e 26170043150602250406601961656994397543610268552663

%e 74036682906190174923494324178799359681422627177289.

%e The first and last 100 digits are shown above, with the intervening digits omitted.

%e The final one hundred digits were computed using PowerMod[9, 9^9, 10^100].

%t nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[9, 9^9] (* or *)

%t f[n_] := Quotient[n^9, 10^(Floor[9*Log10@ n] - 1010)]; Nest[ f@ # &, 9, 9]

%Y Cf. A002488, A054382, A085667, A202955, A054382, A014221, A241291, A241292, A241293, A241294, A241295, A241296, A241297, A241299, A243913.

%K nonn,cons,fini

%O 369693100,1

%A _Robert Munafo_ and _Robert G. Wilson v_, Apr 18 2014

%E Keyword: fini added by _Jianing Song_, Sep 18 2019