login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of obtuse isosceles triangles on a centered hexagonal grid of size n.
2

%I #11 May 31 2014 10:40:18

%S 0,12,108,528,1674,4104,8622,16206,28332,46200,71484,106746,153552,

%T 214860,293166,391470,512592,660546,840840,1054704,1308696,1606776

%N Number of obtuse isosceles triangles on a centered hexagonal grid of size n.

%C A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HexNumber.html">Hex Number</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ObtuseTriangle.html">Obtuse Triangle</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IsoscelesTriangle.html">Isosceles Triangle</a>.

%F a(n) = A241228(n) - A241229(n).

%Y Cf. A190318.

%K nonn,more

%O 1,2

%A _Martin Renner_, Apr 17 2014

%E a(7) from _Martin Renner_, May 31 2014

%E a(8)-a(22) from _Giovanni Resta_, May 31 2014