login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of lines through at least two points of a centered hexagonal grid of size n.
2

%I #12 Sep 19 2017 03:42:38

%S 0,15,84,312,852,1878,3654,6546,10680,16668,25002,35910,50136,68190,

%T 90462,118200,152274,192828,240480,296880,361962,437832,525756,625440,

%U 739146,867864,1011822,1174062,1354572,1554114,1775568,2020848,2289054,2582760,2905410

%N Number of lines through at least two points of a centered hexagonal grid of size n.

%C A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.

%H Andrew Howroyd, <a href="/A241220/b241220.txt">Table of n, a(n) for n = 1..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HexNumber.html">Hex Number</a>.

%o (PARI)

%o c(n,s,fmin,fmax)={sum(k=1+s, n, max(0, fmax(k-s)-max(fmin(k)-1,if(k-2*s>0,fmax(k-2*s)))))}

%o b(n, u, v)={c(2*n-1, u, i->max(0,i-n)+1+i\u*v, i->min(i,n)+n-1+i\u*v)}

%o a(n)={3*((n>1)*(2*n-1) + sum(u=1, 2*n-3, sum(v=1, 2*n-2-u, if(gcd(u,v)==1, b(n,u,v), 0))))} \\ _Andrew Howroyd_, Sep 18 2017

%Y Cf. A018808, A241219, A003215.

%K nonn

%O 1,2

%A _Martin Renner_, Apr 17 2014

%E a(15)-a(16) from _Martin Renner_, Apr 27 2014

%E Terms a(17) and beyond from _Andrew Howroyd_, Sep 18 2017