login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Solutions of the equation (n+2)' = (n+1)' + n', where n' is the arithmetic derivative of n.
0

%I #11 Aug 27 2015 08:17:24

%S 1,4,20257,43910,563101,18895033,119847146,305478634708,7461770367940,

%T 29820549118362

%N Solutions of the equation (n+2)' = (n+1)' + n', where n' is the arithmetic derivative of n.

%C a(9) > 5*10^11. - _Giovanni Resta_, Apr 18 2014

%C a(11) > 5*10^13. - _Hiroaki Yamanouchi_, Aug 27 2015

%e The arithmetic derivative of 43910+2 is 69948, of 43910+1 is 39201, of 43910 is 30747 and 69948 = 39201 + 30747.

%p with(numtheory); P:= proc(q) local a,b,c,n,p;

%p for n from 1 to q do

%p a:=(n+2)*add(op(2,p)/op(1,p),p=ifactors(n+2)[2]);

%p b:=(n+1)*add(op(2,p)/op(1,p),p=ifactors(n+1)[2]);

%p c:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);

%p if a=b+c then print(n); fi; od; end: P(10^9);

%Y Cf. A003415.

%K nonn,more

%O 1,2

%A _Paolo P. Lava_, Apr 17 2014

%E a(7)-a(8) from _Giovanni Resta_, Apr 18 2014

%E a(9)-a(10) from _Hiroaki Yamanouchi_, Aug 27 2015