Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 03 2024 10:01:54
%S 23,47,142,161,433,1435,1900,6679,48917,197943,257941,3916321,
%T 48635983,1142976889,1811878288
%N Consider a number of k digits n = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1). Sequence lists the numbers n such that sigma(n)-n = Sum_{i=1..k-1}{sigma(Sum_{j=1..i}{d_(j)*10^(j-1)})} - Sum_{i=1..k-1}{sigma(Sum_{j=1..i}{d_(k-j+1)*10^(i-j)})} (see example below)
%C a(16) > 10^10. - _Giovanni Resta_, May 23 2016
%e If n = 48917, starting from the least significant digit, let us cut the number into the set 7, 17, 917, 8917. We have:
%e sigma(7) = 8;
%e sigma(17) = 18;
%e sigma(917) = 1056;
%e sigma(8917) = 9196.
%e Then, starting from the most significant digit, let us cut the number into the set 4, 48, 489, 4891. We have:
%e sigma(4) = 7;
%e sigma(48) = 124;
%e sigma(489) = 656;
%e sigma(4891) = 5032.
%e Finally,
%e 8 + 18 + 1056 + 9196 - (7 + 124 + 656 + 5032) = 4459 = sigma(48917) - 48917.
%p with(numtheory); P:=proc(q) local a,b,k,n;
%p for n from 2 to q do a:=0; k:=1; while trunc(n/10^k)>0 do
%p a:=a+phi(trunc(n/10^k)); k:=k+1; od; b:=0; k:=1;
%p while (n mod 10^k)<n do b:=b+phi(n mod 10^k); k:=k+1; od;
%p if phi(n)=b-a then print(n); fi; od; end: P(10^9);
%Y Cf. A000203, A240894-A240903.
%K nonn,base,more
%O 1,1
%A _Paolo P. Lava_, Apr 17 2014
%E a(1)-a(2) corrected and a(12)-a(15) added by _Giovanni Resta_, May 23 2016