The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241196 Primes p at which phi(p-1)/(p-1) reaches a new minimum, where phi is Euler's totient function. 4
 2, 3, 7, 31, 211, 2311, 43891, 78541, 120121, 870871, 1381381, 2282281, 4084081, 13123111, 82192111, 106696591, 300690391, 562582021, 892371481, 6915878971, 71166625531, 200560490131 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For these p, the numerator and denominator of phi(p-1)/(p-1) are listed in A241197 and A241198. This sequence appears to be related to A073918, the smallest prime which is 1 more than a product of n distinct primes. By Dirichlet's theorem on primes in arithmetic progressions, for any n there is a prime p such that p-1 is divisible by the primorial A002110(n).  Then phi(p-1)/(p-1) <= Product_{i=1..n} (1 - 1/prime(i)).  Since Sum_{i >= 1} prime(i) diverges, that goes to 0 as n -> infinity.  Thus there are primes with phi(p-1)/(p-1) arbitrarily close to 0. - Robert Israel, Jan 18 2016 5*10^12 < a(23) <= 12234189897931. - Giovanni Resta, Apr 14 2016 REFERENCES R. K. Guy, Unsolved Problems in Number Theory, A2. LINKS Tamiru Jarso, Tim Trudgian, Quadratic residues that are not primitive roots, arXiv:1710.04320 [math.NT], 2017. Eric Weisstein's World of Mathematics, Euclid Number MAPLE m:= infinity: p:= 1: count:= 0: while count < 10 do   p:= nextprime(p);   r:= numtheory:-phi(p-1)/(p-1);   if r < m then      count:= count+1;      A[count]:= p;      m:= r;   fi od: seq(A[i], i=1..count); # Robert Israel, Jan 18 2016 MATHEMATICA tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Transpose[tMin][[1]] CROSSREFS Cf. A002110, A008330 (phi(prime(n)-1)), A073918, A241194, A241195. Sequence in context: A046972 A006862 A038710 * A073918 A096350 A018239 Adjacent sequences:  A241193 A241194 A241195 * A241197 A241198 A241199 KEYWORD nonn,more AUTHOR T. D. Noe, Apr 17 2014 EXTENSIONS a(20) from Dimitri Papadopoulos, Jan 11 2016 a(21)-a(22) from Giovanni Resta, Apr 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 11:32 EDT 2021. Contains 344990 sequences. (Running on oeis4.)