login
Number of 2n-vertex connected cubic vertex-transitive graphs which are "Graphical Regular Representations" (automorphism group acts regularly on the vertices).
1

%I #19 Aug 25 2020 09:52:41

%S 0,0,0,0,0,0,0,1,2,1,3,1,2,2,3,2,5,2,5,3,4,3,12,4,6,7,7,4,15,4,11,6,8,

%T 6,19,5,8,8,16,6,19,6,11,10,10,7,52,8,17,10,14,8,27,13,22,12,14,9,60,

%U 9,14,17,48,12,28,10,21,14,28,11,77

%N Number of 2n-vertex connected cubic vertex-transitive graphs which are "Graphical Regular Representations" (automorphism group acts regularly on the vertices).

%H N. J. A. Sloane, <a href="/A241165/b241165.txt">Table of n, a(n) for n = 2..640</a>, based on the work of Primož Potočnik, Pablo Spiga and Gabriel Verret

%H Primož Potočnik, Pablo Spiga and Gabriel Verret, <a href="http://staff.matapp.unimib.it/~spiga/census.html">A census of small connected cubic vertex-transitive graphs</a> (See the sub-page Table.html)

%K nonn

%O 2,9

%A _N. J. A. Sloane_, Apr 19 2014