login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..2 arrays with no element equal to one or three horizontal or vertical neighbors, with new values 0..2 introduced in row major order
6

%I #4 Apr 16 2014 06:51:58

%S 1,1,1,2,4,2,4,11,11,4,8,36,58,36,8,16,116,294,294,116,16,32,376,1522,

%T 2436,1522,376,32,64,1216,7846,19814,19814,7846,1216,64,128,3936,

%U 40418,162776,259388,162776,40418,3936,128,256,12736,208374,1333934,3374086

%N T(n,k)=Number of nXk 0..2 arrays with no element equal to one or three horizontal or vertical neighbors, with new values 0..2 introduced in row major order

%C Table starts

%C ...1.....1.......2.........4...........8.............16...............32

%C ...1.....4......11........36.........116............376.............1216

%C ...2....11......58.......294........1522...........7846............40418

%C ...4....36.....294......2436.......19814.........162776..........1333934

%C ...8...116....1522.....19814......259388........3374086.........44030862

%C ..16...376....7846....162776.....3374086.......70145916.......1454236806

%C ..32..1216...40418...1333934....44030862.....1454236806......48054344508

%C ..64..3936..208374..10937316...574246744....30189380016....1586763763374

%C .128.12736.1074002..89651534..7489718098...626548445696...52415988665902

%C .256.41216.5535686.734979136.97685897406.13004327687556.1731396543937826

%H R. H. Hardin, <a href="/A241108/b241108.txt">Table of n, a(n) for n = 1..144</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1) for n>2

%F k=2: a(n) = 2*a(n-1) +4*a(n-2) for n>4

%F k=3: a(n) = 3*a(n-1) +8*a(n-2) +16*a(n-3)

%F k=4: [order 10]

%F k=5: [order 26]

%F k=6: [order 76]

%e Some solutions for n=4 k=4

%e ..0..1..1..2....0..1..1..2....0..1..2..0....0..1..0..2....0..1..2..0

%e ..2..1..1..0....2..1..1..1....1..2..1..2....1..0..2..1....1..0..0..2

%e ..1..0..2..1....0..2..1..1....2..1..2..0....2..1..1..0....2..0..0..0

%e ..0..2..0..2....2..0..2..0....1..2..0..2....0..1..1..2....1..2..0..0

%Y Column 1 is A000079(n-2)

%Y Column 2 is A206687

%K nonn,tabl

%O 1,4

%A _R. H. Hardin_, Apr 16 2014