login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241086 Number of partitions p of n into distinct parts such that max(p) <= 2*(number of parts of p). 9

%I #6 Apr 24 2014 10:28:59

%S 0,1,1,1,1,2,2,2,2,3,4,4,5,5,6,7,8,9,11,12,14,15,17,19,21,24,27,31,34,

%T 38,42,47,51,57,62,70,77,85,93,104,114,125,137,150,164,180,196,214,

%U 234,255,279,304,332,360,393,426,464,502,545,589,640,691,749

%N Number of partitions p of n into distinct parts such that max(p) <= 2*(number of parts of p).

%F a(15) counts these 7 partitions: 8421, 7521, 7431, 654, 6531, 6432, 54321.

%t z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];

%t Table[Count[f[n], p_ /; Max[p] < 2*Length[p]], {n, 0, z}] (* A241085 *)

%t Table[Count[f[n], p_ /; Max[p] <= 2*Length[p]], {n, 0, z}] (* A241086 *)

%t Table[Count[f[n], p_ /; Max[p] == 2*Length[p]], {n, 0, z}] (* A241087 *)

%t Table[Count[f[n], p_ /; Max[p] >= 2*Length[p]], {n, 0, z}] (* A241088 *)

%t Table[Count[f[n], p_ /; Max[p] > 2*Length[p]], {n, 0, z}] (* A241089 *)

%Y Cf. A241085, A241087, A241088, A241089.

%K nonn,easy

%O 0,6

%A _Clark Kimberling_, Apr 17 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 06:01 EDT 2024. Contains 375751 sequences. (Running on oeis4.)